DOI QR코드

DOI QR Code

Production of concrete paving blocks using electroplating waste - Evaluation of concrete properties and solidification/stabilization of waste

  • Received : 2014.03.07
  • Accepted : 2014.08.20
  • Published : 2014.12.25

Abstract

The determination of the effectiveness of the immobilization of blasting dust (waste generated in galvanic activities) in cement matrix, as well of mechanical, physical and microstructural properties of concrete paving blocks produced with partial replacement of cement was the objective of this work. The results showed that blasting dust has high percentage of silica in the composition and very fine particle size, characteristics that qualify it for replacement of cement in manufacturing concrete blocks. The replacement of Portland cement by up to 5% residues did not cause a significant loss in compressive strength nor increase in water absorption of the blocks. Chemical tests indicated that there is no problem of leaching or solubilization of contaminants to the environment during the useful life of the concrete blocks, since the solidification/stabilization process led to the immobilization of waste in the cement mass. Therefore, the use of blasting dust in the manufacture of concrete paving blocks is promising, thus being not only an alternative for proper disposal of such waste as well as a possibility of saving raw materials used in the construction industry.

Keywords

References

  1. ABNT (Associacao Brasileira de Normas Tecnicas) NBR 12653 (1992), Materiais pozolanicos - Especificacao, Rio de Janeiro, Brazil.
  2. ABNT (Associacao Brasileira de Normas Tecnicas) NBR 10004 (2004a), Residuos Solidos - Classificacao, Rio de Janeiro, Brazil.
  3. ABNT (Associacao Brasileira de Normas Tecnicas) NBR 10005 (2004b), Procedimento para Obtencao de Extrato Lixiviado de Residuos Solido", Rio de Janeiro, Brazil.
  4. ABNT (Associacao Brasileira de Normas Tecnicas) NBR 10006 (2004c), Procedimento para Obtencao de Extrato Solubilizado de Residuos Solidos, Rio de Janeiro, Brazil.
  5. ABNT (Associacao Brasileira de Normas Tecnicas) NBR 7211 (2009), Agregados para concreto - Especificacao, Rio de Janeiro, Brazil.
  6. ABNT (Associacao Brasileira de Normas Tecnicas) NRB 9781 (2013), Pecas de concreto para pavimentacao - especificacao e metodos de ensaio, Rio de Janeiro, Brazil.
  7. Ahmadi, B. and Al-Khaja, W. (2001), "Utilization of paper waste sludge in the building construction industry", Resour. Conserv. Recy., 32(2), 105-113. https://doi.org/10.1016/S0921-3449(01)00051-9
  8. Asavapisit, S., Avapisit, S. and Chotkland, D. (2004), "Solidification of electroplating sludge using alkali-activated pulverized fuel ash as cementitious binder", Cement Concrete Res., 34(2), 349-353. https://doi.org/10.1016/j.cemconres.2003.08.012
  9. Benson, R.E., Chandles, H.W. and Chacey, K.A. (1986), "Hazardous waste disposal as concrete admixture", J. Environ. Eng., 111(4), 441-447.
  10. Chaudhari, R. and Malviya, R. (2006), "Factors affecting hazardous waste solidification/stabilization: A review", J. Hazard. Mater., 137(1), 267-276. https://doi.org/10.1016/j.jhazmat.2006.01.065
  11. Chen, Y., Ko, M., Lai, Y. and Chang, J. (2011), "Hydratation and leaching characteristics of cement paste made from electroplating sludges", Waste Manag., 31(6), 1257-1363.
  12. Chidiac, S.E. and Mihaljevic, S.N. (2011), "Performance of dry cast concrete blocks containing waste glass powder or polyethylene aggregates", Cement Concrete Comp., 33(8), 855-863. https://doi.org/10.1016/j.cemconcomp.2011.05.004
  13. Duart, M.A. (2008), "Estudo da microestrutura do concreto com adicao de cinza de casca de arroz residual sem beneficiamento", Dissertation, Federal University of Santa Maria, Santa Maria, Brazil.
  14. Gencel, O., Ozel, C., Koksal, F., Erdogmus, E., Martinez-Barrera, G. and Brostow, W. (2012), "Properties of concrete paving blocks made with waste marble", J. Clean. Prod., 21, 62-70. https://doi.org/10.1016/j.jclepro.2011.08.023
  15. Gollmann, M.A., Silva, M.M., Masuero, A.B. and Santos, J.H.Z. (2010), "Stabilization and solidification of Pb in cement matrices", J. Hazard. Mater., 179(1-3), 507-514.. https://doi.org/10.1016/j.jhazmat.2010.03.032
  16. Intercement (2011), (Access on: August 15, 2012) Available at: http://www.intercement.com/pt
  17. Ismail, Z.Z. and Al-Hashmi, E.A. (2009), "Recycling of waste glass as a partial replacement for fineaggregate in concrete", Waste Manag., 29(2), 655-659. https://doi.org/10.1016/j.wasman.2008.08.012
  18. John, U.E., Jeferson, I., Boardman, D.I., Ghataora, G.S. and HILLS, C.D. (2011), "Leaching evaluation o cement stabilisation/solidification treated kaolin clay", Eng. Geol., 123(4), 315-323. https://doi.org/10.1016/j.enggeo.2011.09.004
  19. Kaur, G., Siddique, R. and Rajor, A. (2013), "Micro-structural and metal leachate analysis of concrete made with fungal treated waste foundry sand", Constr. Build. Mater., 38, 94-100. https://doi.org/10.1016/j.conbuildmat.2012.07.112
  20. Mehta, P.K. and Monteiro, P.J.M. (2013), Microestructure, Properties and Materials, (4th Edition), McGraw-Hill, New York, NY, USA.
  21. Park, S.B., Lee, B.C. and Kim, J.H. (2004), "Studies on mechanical properties o concrete containing waste glass aggregate", Cement Concrete Res., 34, 2181-2189. https://doi.org/10.1016/j.cemconres.2004.02.006
  22. Shi, C. and Spence, R. (2004), "Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes", Crit. Rev. Env. Sci. Tec., 34(4), 391-417. https://doi.org/10.1080/10643380490443281
  23. Shopia, A.C. and Swaminathan, K. (2005), "Assesment o the mechanical stability and chemical leachability of immobilized eletroplating waste", Chemosphere, 58(1), 75-82. https://doi.org/10.1016/j.chemosphere.2004.09.006
  24. Stegemann, J.A. and Buenfeld, N.R. (2003), "Predication of uncofined compressive strengh of cement paste containing industrial wastes", Waste Manag., 23(4), 321-332. https://doi.org/10.1016/S0956-053X(02)00062-4
  25. Taha, B. and Nounu, G. (2008), "Properties of concrete contains mixed colour waste recycle glass as sand and cement replacement", Constr. Build. Mater., 22, 713-720. https://doi.org/10.1016/j.conbuildmat.2007.01.019
  26. Tavares, C.R.G. and Franco, J.M. (2012), "Production of concrete paving blocks (CPB) utilising electroplating residues - Evaluation o mechanical and micro-structural properties", Can. J. Chem. Eng., 90(5), 1-10.
  27. Topcu, I.B. and Canbaz, M. (2004), "Properties of concrete containing waste glass", Cement Concrete Res., 34(8), 267-274. https://doi.org/10.1016/j.cemconres.2003.07.003
  28. USEPA (United States Environmental Protection Agency) (1992), Test methods for evaluating solid waste, physical/chemical methods (SW-846), (3 Edition), WA, USA, (SW-846). (Access: November 20, 2011) Available at: http://www.epa.gov/epawaste/hazard/testemethods/sw846/index.htm
  29. USEPA (United States Environmental Protection Agency) (1996), Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. (Access: October 20, 2011) Available at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3052.pdf
  30. USEPA (United States Environmental Protection Agency) (2009), Technology performance review: Selecting and using Solidification/stabilization treatment for site remediation, Cincinnati, OH, USA, November. (Access: December 13, 2011) Available at: http://www.epa.gov/nrmrl/pubs/600r09148/600r09148.pdf
  31. Zain, M.F.M., Islam, M.N., Radin, S.S. and Yap, S.G. (2004), "Cement-based solidification for the safe disposal of blasted copper slag", Cement Concrete Comp., 26(7), 845-851. https://doi.org/10.1016/j.cemconcomp.2003.08.002