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Abstract

We present a new framework for rental capacity management in which rental capacity is dynamically managed 

by means of temporary inventory addition/return. While serving customers with its own (native) capacity, the rental 

firm rents additional rental capacity from an upper echelon rental company so that it can avoid lost sales which may 

occur when stock is not sufficient, and returns it when stock becomes sufficiently large enough to cope with demands. 

Formulating the model as a Markov decision process, we investigate a flexible capacity addition/return policy that 

maximizes the firm's profit with respect to system costs. Numerical study indicates that rental operation with capacity 

addition/return can be economically favorable over rental operation without capacity expansion/return and can contrib-

ute the reduction in the size of native rental capacity.
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1. 서  론

Knowing how much rental inventory to main-

tain is critical to any rental business operation. 

In the context of a rental business capacity, 

which is the maximum amount of serviced ful-

fillment that can be attained, is equated with the 

amount of rental inventory. Too much rental ca-

pacity can reduce the cash position of a rental 

firm while too little rental capacity may turn away 

customers to its competitors. Since demand and 

rental processes are typically uncertain over any 

period of time, it is essential to develop effective 

policies for controlling the rental capacity. This 

paper presents a new framework for rental ca-

pacity management in which rental capacity is 

dynamically adjusted by means of temporary ca-

pacity addition/return. While serving customers 

with its own capacity, the rental company rents 

additional capacity from the upper echelon rental 

firm so that it can avoid lost sales which may 

occur when stock is insufficient, and returns it 

when stock becomes sufficiently large enough to 

cope with demands.  

The capacity expansion and management lit-

erature is relevant to the model presented in 

this paper. Because we consider both capacity 

expansion and return, however, our model dif-

fers from capacity expansion models with gro-

wing demands over time [2, 4, 14, 15, 17]. Ano-

ther research area relevant to our work is the 

capacity operation problem. Rocklin et al. [16] 

studied the problem of capacity expansion/con-

traction in a production/service facility with 

stochastic demands and showed that the opti-

mal policy is characterized by two threshold va-

lues. Rajagopalan and Soteriou [13] considered a 

firm producing multiple items in a multi-period 

environment and explored the interaction be-

tween production planning and capacity acquis-

ition decisions. They develop an integer pro-

gramming model and an effective solution ap-

proach to determine the optimal capacity acquis-

ition, production and inventory decisions over 

time. So and Tang [18] considered a problem of 

managing congestion in two types of service 

systems and investigated a policy that dynam-

ically adjusts operating capacity according to the 

system state using queueing models. Angelus 

and Porteus [1] studied the issue of determining 

capacity size and production planning in a pro-

duce-to-stock facility. Under instantaneous ca-

pacity additions and reductions, they showed 

that a target interval policy is optimal for ca-

pacity management, provided that demands sto-

chastically increase up to a peak and then de-

crease, 

Inventory management with product returns is 

the other important area of research relevant to 

this problem. The reader is referred to Fleischmann 

et al. [7] and Fleischmann and Kuik [8] for the 

detailed literature review in this area. Our model 

differs from product recovery models in two 

aspects. First, all products issued in our model 

return (because they are rented), which means 

that the return rate is affected by the number 

of products issued. In contrast, product return 

models have partial returns from the products is-

sued and it is often assumed that the demand and 

return processes are independent. Second, we 

consider both capacity (inventory) augmentation 

and reduction while product return models con-

sider capacity (inventory) augmentation only by 

means of stock replenishment and remanufac-
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turing.

The capacity management model presented in 

this paper and the cash flow management models 

[6, 11, 12] have some similar features. However, 

the return and demand processes in our model 

are correlated whereas cash inflow (return proc-

ess) and cash outflow (demand process) in the 

cash flow management models are not directly 

correlated. 

Finally, Kim and Byun [9] considered a special 

case of our model. They assume that a firm can-

not have multiple batches of capacity expansion 

simultaneously. We extend their model in the 

sense that a firm can rent additional batch as 

long as it is economically favorable. Hence, the 

structure of capacity management policy be-

comes much more complicated.   

The paper is organized as follows. In the next 

section, we provide a formulation of our model. 

Numerical analysis of the optimal capacity man-

agement policy is given in Section 3. Section 4 

presents the performance evaluation of rental 

operations with and without flexibility. Finally 

we state our conclusions in the last section.

2. Problem Formulation

In this paper, we raise important strategic is-

sues related to rental capacity management with 

dynamic capacity adjustment. More specifically, 

we address the following research questions : (i) 

When should the rental firm schedule its capacity 

addition via renting capacity from the upper 

echelon rental firm? (ii) While operating the ex-

panded capacity, when should the rental firm re-

turn it to the upper echelon rental firm? (iii) How 

do changes in problem parameters affect the op-

timal capacity addition/return decision? (iv) What 

is the economic value of rental operation with ca-

pacity addition/return? We deal with these issues 

via a Markov decision process (MDP) model. Even 

though the MDP model may be restrictive for 

high-fidelity modeling of real world rental prob-

lems, it is a powerful vehicle for generating stra-

tegic-level insights into the effective rental ca-

pacity management.

We consider a rental firm, denoted by Com-

pany 1, that operates   rental items and decides 

over time when to acquire and return additional 

items to accommodate fluctuations in rental de-

mand. We can say that it has   units of native 

capacity but can extend this capacity. Customers 

arrive at Company 1 according to a Poisson 

process with rate  . Each customer’s rental pe-

riod is modeled as an exponentially distributed 

random variable with mean  . The exponential 

rental duration is appropriate when the duration 

is random with significant variation. In partic-

ular, if the rental duration is flexible and ex-

tendable, it is known that the exponential ap-

proximation is reasonable (Yuan, 1998). It is as-

sumed that rental items are not depreciated in 

time, all items are identical in terms of rental 

service, and all items are returned in serviceable 

condition. Each arriving customer rents exactly 

one unit of item, provided stock is available. At 

all times, unfulfilled customer demands are lost 

and charged a lost sales cost of  . Each satisfied 

customer pays   per unit of time during which 

she is renting an item. The firm incurs a holding 

cost of 
  per unit of time during which each item 

is held in stock. [Figure 1] shows a typical in-

ventory sample path under a rental operation with 

capacity return and expansion.
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[Figure 2] A New Rental Management Model with Capacity Addition/Return

[Figure 1] An Inventory Sample Path Under a Rental 
Operation with Inventory Flexibility

Regarding rental capacity addition/return we 

make the following assumptions : 

(1) Company 1 acquires (rents) batches of ≥  

items from an upper echelon rental firm, de-

noted by Company 2, at a fixed lump-sum 

setup cost   and a variable cost 
  per item 

per unit time that a batch of   items is rented 

by Company 1. Our model can be viewed as 

a    model where if the inventory posi-

tion drops below , the system orders a quan-

tity of the smallest integer multiple of batch 

size   so as to bring the inventory position 

above   (see Chen and Zheng [5] for the ap-

plications of a    model).

(2) Company 1 reduces its expanded capacity by 

  units at a time. When Company 1 returns 

  items to Company 2, a fixed lump-sum 

cost   is incurred.

(3) Both the capacity addition/return processes 

are instantaneous. In other words, if Com-

pany 1 decides to rent (return) a batch of   

units, it is immediately added to (removed 

from) its inventory. Therefore, capacity ex-

pansion is allowed only when stock of rental 

items becomes empty. Although it is a re-

strictive assumption, our model can be ap-

plied to the practical problems, provide that 

Company 2 has a sufficiently large number 

of rental items in stock and the delivery time 

is short. However, if Company 2 needs a pro-

duction of rental items upon Company 1’s 

rental request, the impact of the stochastic 

capacity addition/return process on the rental 

capacity management policy can be crucial.  

(4) Company 1 limits the maximum extended ca-

pacity level to   for some  in the naturals. 

If Company 1 is already operating   ex-

tended rental items, no capacity expansion is 

allowed even though stock is empty. Hence, 

if a demand occurs when stock is empty, it 

is lost and a cost of   is incurred. In light 

of the analysis, the assumption of limited 

maximum extended capacity level makes the 

size of state space finite, which is necessi-

tated for the existence of the optimal policy 

of the MDP problem [3].
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A state is described by the vector     

where   and   respectively denote the number 

of rental items in stock and the number of items 

rented by customers, and   is the number of 

batches of size   that Company 1 is renting from 

Company 2 (if , nothing is rented). The 

state space is denoted by . At each epoch of 

customer return, Company 1 decides whether or 

not to reduce its expanded capacity, if any, by 

returning to Company 2. [Figure 2] graphically 

illustrates a rental operation with capacity addi-

tion/return.

Denote the state at     by       and the 

interest rate by . Then, the expected discounted 

cost given      over an infinite horizon un-

der a rental capacity management policy, , can 

be written as

(1)      lim
→∞











  
  

 ∈
∈∈        

where    if   is true, otherwise, 0. In (1), 


, 

, and 
  respectively denote the 

set of random instances on   of the demand 

rejection, capacity extension, and capacity return 

under policy . Then, the goal of this paper is 

to find an optimal rental capacity management 

policy   that maximizes the following expected 

discounted costs over an infinite horizon:

    ≡
    ≡

    . (2)

Our rental capacity management problem can 

be formulated as a discrete-time Markov deci-

sion problem by using uniformization (see [10]). 

The essence of uniformization makes the tran-

sition rates of all states equal by allowing the 

fictitious self-loop transition. The uniformized 

version of our model has a transition rate   

  for all states. The expected length 

of time per state transition becomes    and the 

discount factor during    is given by   . 

The goal of this paper is to find a capacity return 

policy that maximizes Company 1ʼs profit subject 
to the system costs. Let operators   and   corre-

spond to a customer arrival and a customer re-

turn, respectively. Then,

       if  ;    otherwise, 

       if  ;    otherwise.

Let ,   
,   

 , , and 

  for notational convenance and     

if   is true, 0 otherwise. We define the one stage 

expected profit in state     as   

     ∧   

∧≤  where   and   respectively re-

present discounted rental revenue and holding 

cost, and   is a discounted cost of renting   

items until the next state transition. If a customer 

arrives at the system when     and , it 

is lost with a cost of  . If  a customer arrives 

at the system when     and ≤, the in-

ventory becomes empty and thus Company 1 

should expand its capacity with a cost of . 

Since the expected profit during the expected 

transition time is bounded, the optimal total dis-

counted profit function   can be shown to satisfy 

the following optimality equation which defines 

the value iteration operator   :

(3)   
     

  ∧≤   

 ≠∨   
      
     

 ≥∧ ∧≤≤   
  ∨  ∨

 

In (3), the terms multiplied by   represent tran-
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sitions generated by the arrival of a demand. A 

state transition associated with a demand arrival 

in state   can be one of the following three 

cases : (i) If a demand occurs when     and 

≤, the stock level becomes zero and 

Company 1 immediately rents a batch of   units 

from Company 2. (ii) If a demand occurs when 

    and , it is lost at a cost of  . (iii) 

Otherwise, a demand arrival decreases   by one 

and increases   by one. A state transition asso-

ciated with a customer return in state   

can be one of the following two cases : (i) If a 

customer return occurs when  ≥,  , and 

≤≤,   is increased by one and   is de-

creased by one. And then, Company 1 should decide 

whether or not to reduce its expanded capacity. 

If Company 1 chooses to return,   items are imme-

diately returned to Company 2, which incurs  . 

(ii) When    or , a customer return in-

creases   by one and decreases   by one without 

capacity return considered. In both cases, the terms 

multiplied by    represents a self- 

transition to make the state transition rate equal. 

In addition to characterizing the structure of 

the optimal policy, another important problem 

that Company 1 faces is how to select the optimal 

values  ,  , and   that maximize Company 

1ʼs profit. To find these optimal parameters, we 

need to solve (1) for all possible values in , , 

and   because concavity of   with respect to 

these parameters cannot be guaranteed. This is-

sue will be discussed in Section 4.

3. Optimal Rental Capacity 
Management Policy

Let

         
 ≤≤.

  is the smallest value of the inventory 

level which makes the action of returning   

rented units to Company 2 more profitable than 

the action of not returning them. [Figure 3] gra-

phically illustrates the optimal return policy for 

an example with , , ,   , 


  , 

  ,   ,   ,   , 
  , 

  , and   . When state (5, 11, 3) is rea-

ched while Company 1 is renting     units 

from Company 2, the optimal policy is to reduce 

Company 1ʼs expanded capacity by   units and 
the state is transited to state (3, 11, 2). In state 

(0, 14, 2), Company 1 expands its capacity by   

units and the state immediately is transited to 

(2, 14, 3). In state (6, 6, 1), it is optimal to reduce 

Company 1ʼs expanded capacity by   units and 
the state is transited to (4, 6, 0). In this example, 

    and    . The optimal return 

policy of [Figure 3] was found using value iter-

ation, which will be presented in Section 4

[Figure 3] Optimal Capacity Expansion and Return Policy

If the system starts in a state on the left side 

of the threshold  ≤≤, we note that 
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[Figure 4] Effect of 
 on 

the stock level will never move right across the 

boundary . To see this, suppose that Com-

pany 1 is renting   units from Company 2 and 

the system starts in state (4, 12, 3). There are 

following two possible transitions. First, corre-

sponding to a demand occurrence the stock level 

decreases by one and (4, 12, 3) is transited to (3,

13, 3). Second, corresponding to a customer re-

turn, the stock level increases by one and the 

number of items in rent by customer decreases 

by one (i.e. (5, 11, 3)). Hence, (4, 12, 3) is transited 

to (3, 11, 2). All the transition makes the system 

move within the left side of .

Based on the numerical investigation, we con-

jecture the following : 

(i) Whenever the stock level reaches   upon 

a customer return, Company 1 should reduce 

the currently expanded capacity of   to 

  by returning   units to Company 2, 

and 

(ii) ≥, ≤≤, that is, the op-

timal return curve becomes non-strictly lower 

as Company 1 operates more expanded capa-

city.

The first part of the conjecture implies that the 

optimal return curve   separates two regions 

in the state space when ≥. Part (ii) shows 

that as the size of the expanded capacity rent by 

Company 1 increases, it is optimal to advance the 

timing to reduce the expanded capacity. 

Our numerical investigation also indicates that 

  will change as a function of the system 

costs. For example, [Figure 4] illustrates that 

  might be non-decreasing as 
  decreases. 

This result can be explained intuitively. The de-

crease in 
  makes operating expanded capacity 

less expensive. Hence, it may become optimal to 

increase (i.e. delay capacity return) and keep 

expanded capacity longer. The example used in 

[Figure 4] is identical to the one used in [Figure 

3] except that 
  varies. 

In addition to this, we observe that   is 

non-decreasing as   and   increase, respec-

tively, and it is non-increasing as 
  increases. 

The explanations of these observation are in-

tuitively clear. If the setup cost   gets larger, 

the policy will work towards making less use of 

capacity expansion before. Since the size of ex-

panded capacity is reduced, however, this action 

can break the balance of rental operation estab-

lished by the optimal combination of native and 

expanded rental capacity. To minimize it, the pol-

icy will prefer to delaying the return timing of 

expanded capacity by increasing . Gaining 

insight into the sensitivity of   for changes 

in 
  is similar to the case of 

 . Finally, the in-

crease in   will push Company 1 to keep ex-

panded capacity to a greater degree to reduce the 

possibility of stockout. Hence, it is likely that the 

optimal return curve will be higher than before.
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Ex

   , 
   ,    ,

   ,    , 
  

With Flexibility Without Flexibility


            %

1

20

0.4 12 5 2 677 13 666 1.7

2 0.5 15 4 2 865 15 849 1.9

3 0.6 17 4 2 1055 18 1035 1.9

4 0.7 19 5 2 1245 21 1222 1.9

5 0.8 22 5 2 1436 23 1410 1.8

6

40

0.4 11 6 1 597 12 574 3.9

7 0.5 13 6 2 779 14 749 3.8

8 0.6 15 5 2 962 16 924 3.9

9 0.7 18 5 2 1146 19 1101 3.9

10 0.8 20 5 2 1332 21 1280 3.9

11

50

0.4 10 6 1 564 11 539 4.3

12 0.5 13 8 2 741 13 707 4.7

13 0.6 15 5 2 923 16 877 5.0

14 0.7 17 5 2 1106 18 1051 5.0

15 0.8 19 6 2 1289 20 1225 5.0

<Table 1> Performance Evaluation as a Function of 


4. Numerical Study

In this section, we discuss the issue of simulta-

neously finding  ,  , and   that maximize 

Company 1ʼs rental operation profit. Since it is intract-
able to analytically find these optimal values, they 

should be found based on a three-dimensional search. 

Our numerical study focuses on examining (i) to 

what extent the proposed new capacity management 

policy is effective(i.e. the value of capacity/inventory 

flexibility) and (ii) how  much  ,  , and   are 

affected when the values of system parameters are 

changed. For the sake of explanation, we evaluate 

the optimal average profit per unit time, denoted by 

, rather than the optimal discounted profit .

We generate four sets of scenarios by varying 

the values of these parameters. In <Table 1>, we 

cover situations where the holding cost rate for 

rental units in stock varies. <Table 2> allows us 

to consider cases where capacity addition/return 

setups are inexpensive (50), medium (200), and 

very expensive (400). In <Table 3>, the variable 

costs of renting the extended capacity are such 

that they are 50% of, 70% of, and 90% of the rental 

revenue rate. We do not test a case where   is 

higher than   because it may not be realistic to 

consider that situation. Finally, we are able to ex-

amine the effect of the rental revenue rate by vary-

ing its values in <Table 4>. With these scenario 

setting we also cover situations with five types 

of customer demand rates. The expected rental 

duration is fixed to   = 20 and a lost sales cost 

is set to 400. Since the expected rental duration 

is 20 and the rental revenue rate is 100, a lost 

sales cost of 400 can be a reasonable assumption.

Since it is not guaranteed that he optimal total 

discounted profit function   can be convex or 

concave with respect to , , and , a three di-

mensional search is required for searching  , 

 , and  . For this three dimensional search, 

we set ≤≤, ≤≤, and ≤≤. The 

CPU times of a personal computer to find  , 

 , and   are within seconds for the examples 

in tables 1-4%. in tables 1-4 is defined as the 

average profit change in percent between rental 

operations with and without capacity addition/ 

return to the performance under rental operation 

without capacity addition/return.
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Ex

   , 
   , 

   ,

   , 
  

With Flexibility Without Flexibility


 

            %

1

50 50

0.4 10 8 1 625 11 576 7.8

2 0.5 12 8 1 808 14 749 7.3

3 0.6 15 8 1 993 16 924 6.9

4 0.7 17 8 1 1179 19 1101 6.6

5 0.8 19 8 1 1366 21 1280 6.3

6

200 200

0.4 11 6 1 597 11 576 3.6

7 0.5 13 6 2 779 14 749 3.8

8 0.6 15 5 2 962 16 924 3.9

9 0.7 18 5 2 1146 19 1101 3.9

10 0.8 20 5 2 1332 21 1280 3.9

11

400 400

0.4 11 3 2 579 11 576 0.5

12 0.5 14 3 2 758 14 749 1.2

13 0.6 16 3 2 940 16 924 1.7

14 0.7 18 5 2 1123 19 1101 2.0

15 0.8 20 5 2 1307 21 1280 2.0

<Table 2> Performance Evaluation as a Function of 
  and 



Ex

   , 
   ,    , 

   ,    , 
  

With  Flexibility Without  Flexibility


            %

1

50

0.4 11 8 2 604 11 576 4.6

2 0.5 13 5 2 786 14 749 4.7

3 0.6 15 5 2 971 16 924 4.8

4 0.7 17 5 2 1155 19 1101 4.7

5 0.8 19 6 2 1341 21 1280 4.5

6

70

0.4 11 5 1 593 11 576 2.8

7 0.5 13 5 2 771 14 749 2.9

8 0.6 16 5 2 954 16 924 3.2

9 0.7 18 5 2 1139 19 1101 3.4

10 0.8 20 5 2 1325 21 1280 3.3

11

90

0.4 11 3 1 584 11 576 1.4

12 0.5 14 4 1 762 14 749 1.7

13 0.6 16 4 2 943 16 924 2.0

14 0.7 18 4 2 1126 19 1101 2.2

15 0.8 20 4 2 1309 21 1280 2.2

<Table 3> Performance Evaluation as a Function of 

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Ex


   , 

   ,    , 

   ,    , 
  

With Flexibility Without Flexibility

            %

1

100

0.4 11 8 1 605 11 576 4.8

2 0.5 13 8 1 786 14 749 4.7

3 0.6 15 8 2 969 16 924 4.7

4 0.7 17 7 2 1154 19 1101 4.6

5 0.8 19 6 2 1340 21 1280 4.5

6

120

0.4 11 8 1 765 12 726 5.1

7 0.5 13 8 1 986 14 938 4.9

8 0.6 15 8 2 1209 17 1152 4.8

9 0.7 17 7 2 1434 19 1369 4.6

10 0.8 19 7 2 1660 21 1585 4.5

11

140

0.4 11 8 1 925 12 878 5.1

12 0.5 13 8 1 1186 15 1127 5.0

13 0.6 15 8 2 1449 17 1382 4.7

14 0.7 17 7 2 1714 19 1636 4.6

15 0.8 19 7 2 1980 22 1895 4.3

<Table 4> Performance Evaluation as a Function of 

4.1 Effectiveness of Capacity Expansion/Return 

Strategy

Test results in tables 1-4 suggest that rental 

operation with capacity expansion/return can be 

economically favorable over rental operation with-

out capacity expansion/return. They show that 

rental operation with capacity expansion/return 

can be more effective particularly when (i) in-

ventory holding cost is higher (see <Table 1>), 

(ii) lump-sum setup costs of capacity addi-

tion/return are smaller (see <Table 2>), (iii) 

variable cost of renting expanded units is lower 

(see <Table 3>), and (iv) rental revenue rate is 

larger(see <Table 4>). The average profit dif-

ference of 60 examples for the rental operation 

with and without flexibility is 3.9%. In particular, 

when the lump-sum setup costs for capacity  ad-

dition/return are inexpensive, this figure reaches 

at about 7%. This computational experiment de-

monstrates that rental operation with flexibility 

has the economical advantages over rental oper-

ation without flexibility. 

In addition to the increase in rental operation 

profit, numerical results show that under rental 

operation with capacity expansion/return it may 

be possible to reduce the size of native rental 

capacity. In most of test examples, rental oper-

ation with capacity expansion/return has a lower 

  than rental operation without capacity expan-

sion/return. This tendency becomes more appa-

rent when either   and   are small or   is low. 

We have no other test examples where rental op-

eration with capacity expansion/return has a 

higher   than rental operation without capacity 

expansion/return. When rental companies increase 

the level of native rental capacity from the ac-

quisition, it incurs large investment cost and ex-

tra costs of inventory and maintenance. In con-

trast, by allowing capacity flexibility, companies 
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can reduce their fixed costs and face less risk 

associated with lower native capacity level. The 

trade-off is in the variable and setup costs re-

lated to rental capacity flexibility.

4.2 Observations on the Sensitivity of , , 

and  to Model Parameters

Optimal selection of , , and   should be de-

termined based on how best to use the option 

of rental capacity addition/return, which can be 

also varied according to what the values of sys-

tem parameters are. Our numerical experience 

suggests several meaningful properties that are 

held between system parameters and  ,  , and 

 , which we briefly mention. These tendencies 

add to our intuition and may be very useful in 

developing heuristic formulas in the future re-

search.

Test results in tables 1-4 indicate that as   

increases   increases under both rental oper-

ations with and without capacity expansion/re-

turn. They also indicate that   tends to be non- 

decreasing (but not monotonically) for many ex-

amples, which means that Company 1 should 

utilize more extended capacity to accommodate 

increased customer demands. In the numerical 

study, we observe that   is hardly affected by 

the change of values in system parameters. In 

most of test examples,  . Effectively corre-

sponding to increased demands can be done by 

two different types of actions. One option is to 

increase the batch size   and the other is to in-

crease the maximum extended capacity level . 

The former increases rental variable cost and 

holding cost, and the latter increases the lump- 

sum setup costs related to capacity expansion 

and return. Test results imply that the second 

option is more cost-effective than the first op-

tion. Based on the observations of the numerical 

study, we further provide the following addi-

tional managerial insights for rental operation 

with capacity expansion/return :

(1) As   increases, 
  and   are non-increas-

ing and % value is larger : If   increases, 

the optimal size of native rental capacity will 

be reduced for both rental operations with 

and without capacity addition/return in order 

to avoid excessive holding costs of native 

rental capacity. In case of rental operation 

with capacity addition and return, this deficit 

in rental capacity could be made up by in-

creasing the maximum extended capacity le-

vel, . Even though increasing   implies a 

greater cost related to capacity addition/re-

turn, it is reasonable to expect that increased 

rental revenue will sufficiently offset this in-

cremental cost. Further, the value of inven-

tory flexibility will become greater as the op-

timal size of native rental capacity becomes 

reduced. However, our numerical test indi-

cates that   is not monotonically increased 

in  .

(2) As   and   increase, 
  and   are non-de-

creasing,   is non-increasing, and % value 

is smaller : When   and   increase, Com-

pany 1 has a motivation to cut down total set-

up costs related to capacity addition/return 

by lowering the maximum extended capacity 

level . To make up this deficit in expanded 

capacity, the size of native capacity will be 

increased. In addition, as   and   increase, 

rental operation with capacity addition/return 

becomes expensive and thus its performance 

becomes worse.

(3) As   increases, 
  is non-decreasing,   and 
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  are non-increasing, and % value is smal-

ler : Like increasing   and  , increasing   

will result in less use of capacity addition/ 

return. In addition, smaller batch size of ca-

pacity addition will be preferred because op-

erating expended capacity becomes expen-

sive. The combined result will deteriorate the 

performance of rental operation with capacity 

addition/return because the effect of reducing 

the size of native rental capacity is dimini-

shed

(4) As   increase,   is non-decreasing, and % 

value is larger : If   increases, it will be desir-

able to utilize more capacity addition/return 

by increasing the maximum extended ca-

pacity level  instead of increasing the size 

of native rental capacity .

5. Conclusions

In this paper, we have developed a stochastic 

capacity management model for a rental firm 

with random demand and return processes. The 

proposed model was tested in an extensive nu-

merical study. When the system has a higher in-

ventory holding cost, a smaller setup cost of ca-

pacity addition/return, a lower variable cost of 

renting expanded units, or a larger rental revenue 

rate, our computational results show that the 

economical favor of rental operation with ca-

pacity addition/return can be much larger over 

rental operation without capacity expansion/re-

turn. The numerical experiment also reveals that 

under rental operation with capacity expansion/ 

return it may be possible to reduce the size of 

native rental capacity. Combined with the simple 

structure, these numerical results support the 

value of rental capacity flexibility in practice.

The model presented in this paper can be ap-

plied to the practices with industrial and com-

mercial products such as trucks, cars, and com-

puters. Typically, a rental company generates 

revenue when the rental capacity is available 

upon a customer’s demand and experiences a loss 

when the stock is empty. Therefore, the sug-

gested dynamics of managing rental capacity can 

contribute to the enhancement of the profits of 

the rental companies that face uncertain custom-

er rental demands and returns.

The primary contributions of our work to the 

reverse logistics and capacity management liter-

ature are summarized as follows. We analyzed 

a model which considers the dependency of re-

turn process on demand process and the capacity 

management control simultaneously and deals 

with both capacity augmentation and reduction. 

Our model also differs from the capacity man-

agement literature by treating a situation where 

the product is returned after use. Several issues 

remain to be explored. First, we assume that the 

batch size of capacity expansion is fixed. How-

ever, in many instances, it may be desirable to 

change this batch size dynamically. Second, this 

paper focuses on the instantaneous delivery pro-

cess upon capacity expansion. Another important 

future research is to examine stochastic delivery 

processes. In such cases, there is a richer issue 

of the proper timing of capacity expansion. 
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