DOI QR코드

DOI QR Code

염도차를 이용한 압력지연삼투 공정의 현황과 미래

Pressure Retarded Osmosis Process: Current Status and Future

  • Kim, Jihye (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Seung-Hyun (Department of Civil Engineering, Kyungnam University) ;
  • Kim, Joon Ha (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
  • 투고 : 2014.10.26
  • 심사 : 2014.11.19
  • 발행 : 2014.11.30

초록

에너지 소비량은 지속적으로 증가하고 있는 반면 사용가능한 부존자원은 한정되어 있어 전 세계적으로 에너지 위기가 심화되고 있다. 화석연료 고갈 및 에너지 생산으로 인한 환경오염 문제를 해소하기 위하여 새로운 방식의 에너지 생산 기술 개발이 요구되고 있으며, 소수력, 지열, 태양열 광, 풍력, 바이오매스 등의 신재생 에너지기술이 이미 개발되었거나 활발히 연구되고 있다. 최근 지구상에 풍부하게 존재하는 해수와 담수를 이용하여 에너지를 생산하는 염도차 발전이 관심을 얻고 있으며, 그 중에 대표적인 공정이 압력지연삼투(Pressure retarded osmosis, PRO)이다. 압력지연삼투는 에너지 생산 시 이산화탄소 배출이 없고 외부 환경요인으로 인한 제약이 적다는 장점이 있으나, 전용막 및 최적화 기술의 부재로 인해 아직 상용화 단계에 이르지 못 하였다. 따라서 본 논문에서는 압력지연삼투 기술의 현황과 한계를 다양한 측면에서 분석해보고, 이를 통해 압력지연삼투의 기술 개발 방향에 대해 논의해보고자 한다.

Energy shortage is being exacerbated due to the increase of energy consumption and depletion of fossil fuels. In order to release the energy crisis, new types of energy resources such as small hydropower, solar power, wind power and biomass have been already developed or actively researched. Recently, osmotic power, which harvests energy from salinity gradient between seawater and fresh water, is considered as a feasible candidate. Among the osmotic power processes, pressure retarded osmosis (PRO) is widely gaining attention because of no emission of carbon dioxide and less sensitivity to the external environmental conditions. However, PRO process is facing difficulties such as the lack of specialized PRO membrane and optimization technologies. Therefore, PRO was reviewed in this paper in terms of theoretical background, membrane development, process development and fouling mechanism to provide insights and suggest the future direction of PRO research.

키워드

참고문헌

  1. Choi, Y. G., "National policy to foster renewable energy industry," News Information Chem. Eng., 26(5), 502-505 (2008).
  2. REN21, "Renewables 2014 Global Status Report," pp. 1-216(2014).
  3. Hong, S. K., Lee, S. H., Kim, J. H., Kim, J. H. and Ju, Y. G., "Evolution of RO Process for Green Future," Kor. Ind. Chem. News, 14(6), 9-20(2011).
  4. Soltanieh, M. and Gill, W. N., "Review of reverse osmosis membranes and transport models," Chem. Eng. Commun., 12, 279-363(1981). https://doi.org/10.1080/00986448108910843
  5. Lonsdale, H. K., Merten, U. and Riley, R. L., "Transport properties of cellulose acetate osmotic membranes," J. Appl. Polym. Sci., 9, 1341-1362(1965). https://doi.org/10.1002/app.1965.070090413
  6. Achilli, A., Cath, T. Y. and Childress, A. E., "Power generation with pressure retarded osmosis: An experimental and theoretical investigation," J. Membr. Sci., 343, 42-52(2009). https://doi.org/10.1016/j.memsci.2009.07.006
  7. Yip, N. Y. and Elimelech, M., "Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis," Environ. Sci. Technol., 45(23), 10273-10282 (2011). https://doi.org/10.1021/es203197e
  8. McCutcheon, J. R. and Elimelech, M., "Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis," J. Membr. Sci., 284, 237-247(2006). https://doi.org/10.1016/j.memsci.2006.07.049
  9. Kim, J. H., Park, M. K., Snyder, S. A. and Kim, J. H., "Reverse osmosis (RO) and pressure retarded osmosis (PRO) hybrid processes: Model-based scenario study," Desalination, 322, 121-130(2013). https://doi.org/10.1016/j.desal.2013.05.010
  10. Lee, K. L., Baker, R. W. and Lonsdale, H. K., "Membranes for power generation by pressure-retarded osmosis," J. Membr. Sci., 8, 141-171(1981). https://doi.org/10.1016/S0376-7388(00)82088-8
  11. Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D., Hoover, L. A., Kim, Y. C. and Elimelech, M., "Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients," Environ. Sci. Technol., 45(10), 4360-4369(2011). https://doi.org/10.1021/es104325z
  12. Bui, N.-N., Lind, M. L., Hoek, E. M. V. and McCutcheon, J. R. "Electrospun nanofiber supported thin film composite membranes for engineered osmosis," J. Membr. Sci., 385- 386, 10-19(2011). https://doi.org/10.1016/j.memsci.2011.08.002
  13. Wang, K. Y., Chung, T.-S. and Amy, G., "Developing thinfilm composite forward osmosis membranes of the PES/SPSf substrate through interfacial polymerization," AIChE J., 58(3), 770-781(2012). https://doi.org/10.1002/aic.12635
  14. Li, X., Wang, K. Y., Helmer, B. and Chung, T.-S., "Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes," Ind. Eng. Chem. Res., 51(30), 10039-10050(2012) https://doi.org/10.1021/ie2027052
  15. Han, G. Chung, T.-S., Toriida, M. and Tamai, S., "Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination," J. Membr. Sci., 423-424, 543-555(2012). https://doi.org/10.1016/j.memsci.2012.09.005
  16. Bui, N.-N. and McCutcheon, J. R., "Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis," Environ. Sci. Technol., 47(3), 1761-1769 (2013). https://doi.org/10.1021/es304215g
  17. Han, G., Zhang, S., Li, X. and Chung, T.-S., "High performance thin-film composite pressure retarded osmosis (PRO) membranes for renewable salinity-gradient energy generation," J. Membr. Sci., 440, 108-121(2013). https://doi.org/10.1016/j.memsci.2013.04.001
  18. Li, X., Zhang, S., Fu, F. and Chung, T.-S., "Deformation and reinforcement of thin-film composite (TFC) polyamideimide (PAI) membranes for osmotic power generation," J. Membr. Sci., 434, 204-217(2013). https://doi.org/10.1016/j.memsci.2013.01.049
  19. Ma, N., Wei, J., Qi, S., Zhao, Y., Gao, Y. and Tang, C. Y., "Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes," J. Membr. Sci., 441, 54-62(2013) https://doi.org/10.1016/j.memsci.2013.04.004
  20. Bui, N.-N. and McCutcheon, J. R., "Nanofiber supported thin-film composite membrane for pressure-retarded osmosis," Environ. Sci. Technol., 48(7), 4129-4136(2014). https://doi.org/10.1021/es4037012
  21. Zhang, S., Fu, F. and Chung, T.-S., "Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power," Chem. Eng. Sci., 87, 40-50(2013). https://doi.org/10.1016/j.ces.2012.09.014
  22. Chou, S., Wang, R., Shi, L., She, Q., Tang, C. and Fane, A. G., "Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density," J. Membr. Sci., 389, 25-33(2012). https://doi.org/10.1016/j.memsci.2011.10.002
  23. Chou, S., Wang, R. and Fane, A. G., "Robust and High performance hollow fiber membranes for energy harvesting from salinity gradients by pressure retarded osmosis," J. Membr. Sci., 448, 44-54(2013). https://doi.org/10.1016/j.memsci.2013.07.063
  24. Fu, F.-J., Zhang, S., Sun, S.-P., Wang, K.-Y. and Chung, T.-S., "POSS-containing delamination-free dual-layer hollow fiber membranes for forward osmosis and osmotic power generation," J. Membr. Sci., 443, 144-155(2013). https://doi.org/10.1016/j.memsci.2013.04.050
  25. Han, G., Wang, P. and Chung, T.-S., "Highly robust thinfilm composite pressure retarded osmosis (PRO) holllow fiber membranes with high power densities for renewable salinity-gradient energy generation," Environ. Sci. Technol., 47(14), 8070-8077(2013). https://doi.org/10.1021/es4013917
  26. Cui, Y., Liu, X. Y. and Chung, T.-S., "Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes," Chem. Eng. J., 242, 195-203(2014). https://doi.org/10.1016/j.cej.2013.12.078
  27. Han G. and Chung, T.-S., "Robust and high performance pressure retarded osmosis hollow fiber membranes for osmotic power generation," AIChE J., 60(3), 1107-1119(2014). https://doi.org/10.1002/aic.14342
  28. Luo, L., Wang, P., Zhang, S., Han, G. and Chung, T.-S., "Novel thin-film composite tri-bore hollow fiber membrane fabrication for forward osmosis," J. Membr. Sci., 461, 28-38(2014). https://doi.org/10.1016/j.memsci.2014.03.007
  29. Zhang, S., Sukitpaneenit, P. and Chung, T.-S., "Design of robust hollow fiber membranes with high power density for osmotic energy production," Chem. Eng. J., 241, 457-465(2014). https://doi.org/10.1016/j.cej.2013.10.063
  30. Ingole, P. G., Choi, W., Kim, K.-H., Jo, H.-D., Choi, W.-K., Park, J.-S. and Lee, H.-K., "Preparation, characterization and performance evaluations of thin film composite hollow fiber membrane for energy generation," Desalination, 345, 136-145(2014). https://doi.org/10.1016/j.desal.2014.04.025
  31. Li, X. and Chung, T.-S., "Thin-film composite P84 copolyimide hollow fiber membranes for osmotic power generation," Appl. Energy, 114, 600-610(2014). https://doi.org/10.1016/j.apenergy.2013.10.037
  32. Loeb, S., "Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules," Desalination, 143(2), 115-122(2002). https://doi.org/10.1016/S0011-9164(02)00233-3
  33. Neumann, F., "Report of the meeting on salinity gradient power generation," in proceeding of the Integrated Network for Energy from Salinity Gradient Power, IMI, Singapore, pp. 1-61(2012).
  34. Skilhagen, S. E., Dugstad, J. E., Aaberg, R. J., "Osmotic power-power production based on the osmotic pressure difference between waters with varying salt gradients," Desalination, 220(1-3), 476-482(2008). https://doi.org/10.1016/j.desal.2007.02.045
  35. Statkraft Home Page, http://www.statkraft.com(2014).
  36. Saito, K., Irie, M., Zaitsu, S., Sakai, H., Hayashi, H. and Tanioka, A., "Power generation with salinity gradient by pressure retarded osmosis using concentrated brine from SWRO system and treated sewage as pure water," Desalinat. Water Treat., 41(1-3), 114-121(2012). https://doi.org/10.1080/19443994.2012.664696
  37. Kurihara, M., "Mega-Ton Water System including PRO," in proceeding of the 1st International Symposium Innovative Desalination Technologies with INES Meeting, GMVP, Soeul, pp. 217-223(2014)
  38. Achilli, A., Prante, J. L., Hancock, N. T., Maxwell, E. B. and Childress, A. E., "Experimental results from RO-PRO: A next generation system for low-energy desalination," Environ. Sci. Technol., 48(11), 6437-6443(2014). https://doi.org/10.1021/es405556s
  39. Holman, S. R. and Ohlinger, K. N., "An evaluation of fouling potential and methods to control fouling in microfiltration membranes for secondary wastewater effluent," in proceeding of the Water Environment Federation, Water Environment Federation, San Diego, pp. 6417-6444(2007).
  40. Zhang, M., Hou, D., She, Q. and Tang, C. Y., "Gypsum scaling in pressure retarded osmosis: Experiments, mechanisms and implications," Water Res., 48, 387-395(2014). https://doi.org/10.1016/j.watres.2013.09.051
  41. She, Q., Wong, Y. K. W., Shuaifei Zhao, and Tang, C. Y., "Organic fouling in pressure retarded osmosis: Experiments, mechanisms and implications," J. Membr. Sci., 428, 181-189(2013). https://doi.org/10.1016/j.memsci.2012.10.045
  42. Thelin, W. R., Sivertsen, E., Holt, T. and Brekke, G., "Natural organic matter fouling in pressure retarded osmosis," J. Membr. Sci., 438, 46-56(2013). https://doi.org/10.1016/j.memsci.2013.03.020
  43. Yip, N. Y. and Elimelech, M., "Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients," Environ. Sci. Technol., 47(21), 12607-12616(2013). https://doi.org/10.1021/es403207m
  44. Kim, J. H., "System engineering approach for PRO R&D," in proceeding of the 1st International Symposium Innovative Desalination Technologies with INES Meeting, GMVP, Soeul, pp. 233-237(2014).
  45. Holt, T., "Salinity power by pressure retarded osmosis," in proceeding of the International Workshop on Salinity Gradient Energy, CAPMIX, Milan, pp. 16(2012).
  46. Hong, S. K., Kim, Y. J., Lee, J. S., Kim, J. H., Park, M. K. and Lee, J. J., "Spiral-wound membrane module for forward osmosis process," Application number 10-2012-0085748(2012).
  47. Almansoori, A. and Saif, Y., "Structural optimization of osmosis processes for water and power production in desalination applications," Desalination, 344, 12-27(2014). https://doi.org/10.1016/j.desal.2014.03.002
  48. Kurihara, M. and Liberman, B., Panel discussion at 1st International Symposium Innovative Desalination Technologies with INES Meeting, GMVP, Soeul(2014).

피인용 문헌

  1. Development of SWRO-PRO hybrid process simulation and cost estimation program vol.30, pp.3, 2016, https://doi.org/10.11001/jksww.2016.30.3.299
  2. Assessment of Power Generation by Pressure Retarded Osmosis Process from Spiral-Wound Membrane Pilot-Plant vol.38, pp.9, 2016, https://doi.org/10.4491/KSEE.2016.38.9.476
  3. Modeling and Simulation Studies Analyzing the Pressure-Retarded Osmosis (PRO) and PRO-Hybridized Processes vol.12, pp.2, 2019, https://doi.org/10.3390/en12020243