DOI QR코드

DOI QR Code

스텐철사를 전극으로 이용하는 미생물연료전지의 전류 발생

Current Generation from Microbial Fuel Cell Using Stainless Steel Wire as Anode Electrode

  • 장재경 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김경민 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 변성아 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 유영선 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 장인섭 (광주과학기술원 환경공학과) ;
  • 강연구 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김영화 (국립농업과학원 농업공학부 에너지환경공학과)
  • Jang, Jae Kyung (Energy and Environmental Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Kyung Min (Energy and Environmental Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Byun, SungAh (Energy and Environmental Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ryou, Young Sun (Energy and Environmental Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Chang, In Seop (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kang, Young Koo (Energy and Environmental Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Young Hwa (Energy and Environmental Division, National Academy of Agricultural Science, Rural Development Administration)
  • 투고 : 2014.10.20
  • 심사 : 2014.11.17
  • 발행 : 2014.11.30

초록

산화전극부 전극은 단순히 전자를 받아 전달할 수 있는 역할 뿐만 아니라 공극이 많아 표면적이 큰 구조로 미생물을 고정화할 수 있는 표면적을 제공할 수 있어야 한다. 미생물의 수가 많을수록 폐수처리 효율과 전류발생을 높일 수 있기 때문이다. 따라서 전극은 미생물연료전지의 효율을 높일 수 있는 중요한 역할을 하는 인자 중의 하나이다. 본 연구는 미생물연료전지에 사용하는 고가의 흑연펠트를 스텐철사 타래(철 수세미)로 대체할 수 있는지 알아보기 위한 것이다. 이 연구에 사용된 가축분뇨는 전처리를 거친 후 유기오염물질(COD)로 500 mg/L로 희석한 것을 이용하였고, 이때 전류 발생은 스텐철사 타래를 적용하였을 때 약 5% 정도 낮았지만 큰 차이가 없는 것으로 나타났다. 유기오염물질(COD)의 감소는 스텐철사 타래를 이용하였을 때 88.3%이었으며, 흑연펠트를 사용하였을 때 82.4%로 스텐철사 타래의 제거율이 더 높게 나타났다. 암모니아성 질소 이온의 경우는 두 경우 모두 반응시간에 따라 농도 변화가 거의 없는 것으로 나타났다. 이 결과 스텐철사 타래를 적용하였을 때 전류발생이나 수처리 측면 모두 효과가 유사하거나 더 좋은 결과를 보였으며, 초기 시스템을 구축하는 비용을 약 1/50 정도로 줄일 수 있는 것으로 예상되어. 흑연펠트 대체제로 적용이 가능할 것으로 판단된다.

Anode electrode in a microbial fuel cell (MFC) should transfer the receiving electron as well as provide large surface area that can be immobilized microorganisms. Microorganisms' population is one of important factors to improve the current generation and to treat the livestock wastewater by biological treatment. These studies were attempted to investigate if stainless-steel wire skein (SSWS) could be used as anode electrode replacement a graphite felt electrode in microbial fuel cell. For these studies, pretreated livestock wastewater was used diluted to 500 mg/L as COD before use. At this time, the current showed a little difference of about 5% when using each of a SSW and graphite felt (control). There was no significant difference in the current value. The organic removal rate in the microbial fuel cells used graphite felt and SSWS was 82.4% and 88.3%, respectively. The COD removal in the MFC used the SSWS was higher than that of graphite felt. Ammonium nitrogen was showed similar trend in two case all. These results about current generation and organic matter reduction seem possible that SSWS was used to anode electrode. When SSWS is used, the initial investment for system construction is expected to be able to reduce by approximately 1/50.

키워드

참고문헌

  1. Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S. and Kim, H. J., "Operational parameters affecting the performance of a mediator-less microbial fuel cell," Biosens. Bioelectron., 18, 327-324(2003). https://doi.org/10.1016/S0956-5663(02)00110-0
  2. Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S. and Kim, B. H., "Construction and operation of a novel mediator- and membrane-less microbial fuel cell," Proc. Biochem., 39(8), 1007-1012(2004).
  3. Liu, H. and Logan, B. E., "Electricity generation using an air-cathode single chamber microbial fuel cell in the rresence and absence of a proton exchange membrane," Environ. Sci. Technol., 38(14), 4040-4046(2004). https://doi.org/10.1021/es0499344
  4. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P. and Rabaey, K., "Microbial fuel cells: methodology and technology," Environ. Sci. Technol., 40(17), 5181-5192(2006). https://doi.org/10.1021/es0605016
  5. Rabaey, K. and Verstraete, W., "Microbial fuel cells; novel biotechnology for energy generation," Trends Biotechnol., 23(6), 291-298(2005). https://doi.org/10.1016/j.tibtech.2005.04.008
  6. Jang, J. K., Kim, S. H., Ryou, Y. S., Lee, S. H., Kang, Y. G., Kim, Y. H. and Choi, J. E., "Studies on a feasibility of swine farm wastewater treatment using microbial fuel cell," Kor. J. Microbiol. Biotechnol., 38(4), 461-466(2010).
  7. Jang, J. K., Hong, S. H., Ryou, Y. S., Lee, E. Y., Chang, I. S., Kang, Y. K. and Kim, J. G., "Microbial communities of the microbial fuel cell using swine wastewater in the enrichment step with the lapse of time," J. Kor. Soc. Environ. Eng., 35(12), 973-977(2013). https://doi.org/10.4491/KSEE.2013.35.12.973
  8. Min, B., Kim, J. R., Oh, S. E., Regan, J. M. and Logan, B. E., "Electricity generation from swine wastewater using microbial fuel cell," Water Res., 39, 4961-4968(2005). https://doi.org/10.1016/j.watres.2005.09.039
  9. Lee, Y. and Nirmallkhandan, N., "Electricity production in membrane-less microbial fuel cell with livestock organic solid waste," Bioresour. Technol., 102, 5831-5835(2011). https://doi.org/10.1016/j.biortech.2011.02.090
  10. Zhou, M., Chi, M., Luo, J., He, H. and Jin, T., "An overview of electrode materials in microbial fuel cells," J. Power Sour., 196, 4427-4435(2011). https://doi.org/10.1016/j.jpowsour.2011.01.012
  11. Wei, J., Liang, P. and Huang, X., "Recent progress in electrodes for microbial fuel cells," Bioresour. Technol., 102, 9335-9344(2011). https://doi.org/10.1016/j.biortech.2011.07.019
  12. Gong, X. B., You, S. J., Wang, X. H., Zhang, J. N., Gan, Y. and Ren, N. Q., "A novel stainless steel mesh/cobalt oxide hybrid electrode for elfficient catalysis of oxygen reduction in a microbial fuel cell," Biosens. Bioelectron., 55, 237-241 (2014). https://doi.org/10.1016/j.bios.2013.12.015
  13. Duman, C., Mollica, A., Feron, D., Basseguy, R., Etcheverry, L. and Bergel, A., "Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials," Electrochem. Acta, 53, 468-473(2007). https://doi.org/10.1016/j.electacta.2007.06.069
  14. Jang, J. K., Choi, J. E., Ryou, Y. S., Lee, S. H. and Lee, E. Y., "Effect of ammonium and nitrate on current generation using dual-cathode microbial fuel cells," J. Microbial. Biotechnol., 22(2), 270-273(2012). https://doi.org/10.4014/jmb.1110.10040

피인용 문헌

  1. Prevention of Power Overshoot and Reduction of Cathodic Overpotential by Increasing Cathode Flow Rate in Microbial Fuel Cells used Stainless Steel Scrubber Electrode vol.39, pp.10, 2017, https://doi.org/10.4491/KSEE.2017.39.10.591