DOI QR코드

DOI QR Code

Ex-situ 7Li MAS NMR Study of Olivine Structured Material for Cathode of Lithium Ion Battery

  • Lee, Youngil (Department of Chemistry, University of Ulsan) ;
  • An, JiEun (Department of Chemistry, University of Ulsan) ;
  • Park, Seul-A (Research Center for Industrial Chemical Biotechnology, Korea Research Institute of Chemical Technology) ;
  • Song, HyeYeong (Department of Chemistry, University of Ulsan)
  • Received : 2014.11.10
  • Accepted : 2014.12.11
  • Published : 2014.12.20

Abstract

$^7Li$ nuclear magnetic resonance (NMR) spectra have been observed for $LiMPO_4$ (M = Fe, Mn) samples, as a promising cathode material of lithium ion battery. Observed $^7Li$ shifts of $LiFe_{1-x}Mn_xPO_4$ (x = 0, 0.6, 0.8, and 1) synthesized with solid-state reaction are compared with calculated $^7Li$ shift ranges based on the supertranferred hyperfine interaction of Li-O-M. Ex situ $^7Li$ NMR study of $LiFe_{0.4}Mn_{0.6}PO_4$ in different cut-off voltage for the first charge process is also performed to understand the relationship between $^7Li$ chemical shift and oxidation state of metals affected by delithiation process. The increment of oxidation state for metals makes to downfield shift of $^7Li$ by influencing the supertranferred hyperfine interaction.

Keywords

References

  1. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem.Soc. 144, 1188. (1997). https://doi.org/10.1149/1.1837571
  2. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, J. Electrochem. Soc. 144, 1609. (1997). https://doi.org/10.1149/1.1837649
  3. S. Andersson, J. O. Thomas, B. Kalska, L. Haggstrom, Electrochem, Solid State Lett. 3, 66. (2000).
  4. A. Yamada, S. C. Chung, K. Hinokuma, J. Electrochem. Soc. 148, A224. (2001). https://doi.org/10.1149/1.1348257
  5. H. Hung, S. C. Yin, L .F. Hazar, Electrochem.Solid-State Lett. 4, A170. (2001). https://doi.org/10.1149/1.1396695
  6. S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mat. 1, 123. (2002). https://doi.org/10.1038/nmat732
  7. A. Yamada, S. C. Chung, J. Electrochem. Soc. 148, A960. (2001). https://doi.org/10.1149/1.1385377
  8. Y. Wang, D. Zhang, X. Yua, R. Cai, Z. Shao, X. Z. Liao, Z. F. Ma, J. Alloy Compd. 492, 675. (2010). https://doi.org/10.1016/j.jallcom.2009.12.014
  9. W. S. Yoon, K. Y. Chung, K. W. Nam, J. McBreen, D. Wang, X. Huang, H. Li, L. Chen, X. Q. Yang, J. Power Sources 183, 427. (2008). https://doi.org/10.1016/j.jpowsour.2008.05.030
  10. K. W. Nam, X. J. Wang, W. S. Yoon, H. Li, X. Huang, O. Haas, J. Bai, X. Q. Yang, Electrochem. Commun. 11, 913. (2009). https://doi.org/10.1016/j.elecom.2009.02.031
  11. A. Yamada, M. Hosoya, S.C. Chung, Y. Kudo, K. Hinokuma, K. Y. Liu, Y. Nishi, J. Power Sources 119-121, 232. (2003). https://doi.org/10.1016/S0378-7753(03)00239-8
  12. A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, K. Itoh, M. Yonemura, T. Kamiyama, Chem. Mater. 18, 804. (2006). https://doi.org/10.1021/cm051861f
  13. T. Nedoseykina, M. G. Kim, S.-A. Park, H.-S. Kim, S.-B. Kim, J. Cho, Y. Lee, Electrochimica Acta. 55, 8876. (2010). https://doi.org/10.1016/j.electacta.2010.08.037
  14. B. C. Sin, S. U. Lee, B.-S. Jin, H.-S. Kim, J. S. Kim, S.-I. Lee, J. Noh, Y. Lee, Solid State Ionics 260, 2. (2014). https://doi.org/10.1016/j.ssi.2014.03.005
  15. J.-H. Jeong, Y.-G. Park, S.-S. Choi, Y. Kim, J. Korean Magn. Reson. Soc. 17, 81. (2013). https://doi.org/10.6564/JKMRS.2013.17.2.081
  16. W. Y. Kim, A. R. Lim, J. Korean Magn. Reson. Soc. 17, 88. (2013).
  17. M. C. Tucker, M. M. Doeff, T. J. Richardson, R. Finones, E. J. Cairns, J. A. Reimer, J. Am. Chem. Soc. 124, 3832. (2002). https://doi.org/10.1021/ja017838m
  18. S. L. Wilcke, Y.-J. Lee, E. J. Cairns, J. A. Reimer, Appl. Magn. Reson. 32, 547. (2007). https://doi.org/10.1007/s00723-007-0032-1
  19. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, D. O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40, 70. (2002). https://doi.org/10.1002/mrc.984