DOI QR코드

DOI QR Code

NMR Study of larger proteins using isotope labeling

  • Received : 2014.10.10
  • Accepted : 2014.12.11
  • Published : 2014.12.20

Abstract

Larger proteins (above molecular weight 50 kDa) usually show slow motional tumbling in solution, which facilitates the decay of NMR signal, resulting in poor signal-to-noise. In the past twenty years, researchers have tried to overcome this problem with higher molecular weight by improvement of hardware (higher magnetic field and cryoprobe), optimization of pulse sequences for lager molecules, and development of isotope-labeling techniques. Actually, GroEL/ES complex (${\approx}$ 900 kDa) was successfully studied using combination of above techniques. Among the techniques used in large molecular studies, the impact of isotope-labeling for large molecules study is summarized and discussed here.

Keywords

References

  1. Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K. Nature 418, 207. (2002). https://doi.org/10.1038/nature00860
  2. Rudiger S, Freund SM, Veprintsev DB, Fersht AR. Proc. Natl. Acad. Sci. U S A. 99, 11085-90. (2002). https://doi.org/10.1073/pnas.132393699
  3. Park SJ, Borin BN, Martinez-Yamout MA, Dyson HJ. Nat. Struct. Mol. Biol. 18, 537. (2011). https://doi.org/10.1038/nsmb.2045
  4. Christodoulou J, Larsson G, Fucini P, Connell SR, Pertinhez TA, Hanson CL, Redfield C, Nierhaus KH, Robinson CV, Schleucher J, Dobson CM. Proc. Natl. Acad. Sci. U S A 101, 10949. (2004). https://doi.org/10.1073/pnas.0400928101
  5. Sprangers R, Gribun A, Hwang PM, Houry WA, Kay LE. Proc. Natl. Acad. Sci. U S A 102, 16678. (2005). https://doi.org/10.1073/pnas.0507370102
  6. Sprangers R, Kay LE. Nature 445, 618. (2007). https://doi.org/10.1038/nature05512
  7. L.E. Kay, J. Am. Chem. Soc. 116, 11655. (1994). https://doi.org/10.1021/ja00105a005
  8. Lian L-Y, Middleton DA. Progress in Nuclear Magnetic Resonance Spectroscopy 39, 171. (2011).
  9. Nietlispach D et al., J. Am. Chem. Soc. 118 , 407. (1996). https://doi.org/10.1021/ja952207b
  10. London RE, Wageman WE, Blakley RL. FEBS Lett. 160, 56. (1983). https://doi.org/10.1016/0014-5793(83)80935-1
  11. Rosen MK, Gardner KH, Willis RC, Parris WE, Pawson T, Kay LE. J. Mol. Biol. 263, 627. (1996). https://doi.org/10.1006/jmbi.1996.0603
  12. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE. J. Biomol. NMR 13, 369. (1999). https://doi.org/10.1023/A:1008393201236
  13. Park SJ, Kostic M, Dyson HJ. J. Mol. Biol. .411, 158. (2011). https://doi.org/10.1016/j.jmb.2011.05.030

Cited by

  1. A simple guide to the structural study on membrane proteins in detergents using solution NMR vol.19, pp.3, 2015, https://doi.org/10.6564/JKMRS.2015.19.3.137
  2. Structural stability of CD1 domain of human mitotic checkpoint serine/threonine-protein kinase, Bub1 vol.19, pp.2, 2015, https://doi.org/10.6564/JKMRS.2015.19.2.088
  3. Dynamic Profile of the Copper Chaperone CopP from Helicobacter Pylori Depending on the Bound Metals vol.20, pp.3, 2016, https://doi.org/10.6564/JKMRS.2016.20.3.076
  4. Proper NMR methods for studying RNA thermometers vol.19, pp.3, 2015, https://doi.org/10.6564/JKMRS.2015.19.3.143
  5. Expression and Purification of the Helicase-like Subdomains, H1 and H23, of Reverse Gyrase from A. fulgidus for Heteronuclear NMR study vol.19, pp.2, 2015, https://doi.org/10.6564/JKMRS.2015.19.2.095
  6. The difference of metabolic profile between male and female zebrafish vol.20, pp.1, 2016, https://doi.org/10.6564/JKMRS.2016.20.1.013