DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,4'-Bipyridinium Chlorochromate)

크롬(VI)-헤테로고리 착물(2,4'-비피리디늄 클로로크로메이트)에 의한 치환 벤질 알코올류의 산화반응에서 속도론과 메카니즘

  • Park, Young Cho (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Young Sik (Department of Chemical Engineering, Kangwon National University)
  • 박영조 (강원대학교 화학공학과) ;
  • 김영식 (강원대학교 화학공학과)
  • Received : 2014.09.16
  • Accepted : 2014.10.13
  • Published : 2014.12.10

Abstract

Cr(VI)-heterocyclic complex (2,4'-bipyridinium chlorochromate) was synthesized by the reaction between heterocyclic compound(2,4'-bipyridine) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using 2,4'-bipyridinium chlorochromate in various solvents showed that the reactivity increased with the increase of the dielectric constant (${\varepsilon}$), in the order : N,N-dimet-hylformamide (DMF) > acetone > chloroform > cyclohexene. In the presence of DMF solvent with acidic catalyst such as hydrochloric acid (HCl solution), 2,4'-bipyridinium chlorochromate oxidized benzyl alcohol (H) and its derivatives (p-$CH_3$, m-Br, m-$NO_2$). Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.67 (303 K). The observed experimental data have been rationalize the proton transfer occurred followed the formation of a chromate ester in the rate-determining step.

크롬(VI)-헤테로고리 착물(2,4'-비피리디늄 클로로크로메이트)을 합성하여, 적외선 분광광도법(IR), 유도결합 플라즈마(ICP) 등으로 구조를 확인하였고, 여러 가지 용매 하에서, 2,4'-비피리디늄 클로로크로메이트를 이용하여 벤질알코올의 산화반응을 측정한 결과, 유전상수값의 증가에 따라 반응도 증가했다는 것을 보였다. 그 순서는 : N,N-디메 틸포름아미드(DMF) > 아세톤 > 클로로포름 > 시클로헥센산 촉매(HCl)를 이용한 DMF 용매 하에서, 2,4'-비피리디늄 클로로 크로메이트은 벤질 알코올(H)과 그의 유도체들(p-$CH_3$, m-Br, m-$NO_2$)을 효과적으로 산화시켰다. 전자받개 그룹들은 반응 속도가 감소한 반면에 전자주개 치환체들은 반응속도를 증가시켰고, Hammett 반응상수(${\rho}$) 값은 -0.67 (303 K)이었다. 속도결정단계에서 크로메이트 에스테르의 형성과정을 거친 후, 양성자 전이가 일어났다.

Keywords

References

  1. K. K. Banerji, Kinetic Study of the Oxidation of Substituted Benzyl Alcohols by Ethyl Chlorochromate, Bull. Chem. Soc. Japan, 61, 1767-1771 (1988). https://doi.org/10.1246/bcsj.61.1767
  2. J. F. Kuo, Chromium(VI) Complexation with Triisooctylamine in Organic Solvents, Bull. Chem. Soc. Japan, 64, 3059-3062 (1991). https://doi.org/10.1246/bcsj.64.3059
  3. M. K. Mahanti and D. Dey, Kinetics of Oxidation of Substituted Benzyl Alcohols by Quinolinium Dichromate, J. Org. Chem., 55, 5848-5850 (1990). https://doi.org/10.1021/jo00310a015
  4. M. K. Mahanti, Kinetics of Oxidation of Nitrotoluenes by Acidic Hexacyanoferrate (III), Bull. Korean Chem. Soc., 4, 120-123 (1983).
  5. G. P. Panigrahi, Michaelis-Menten Behaviour in the Oxidation of Benzaldehydes by Pyridinium Chlorochromate, Bull. Korean Chem. Soc., 13, 547-550 (1992).
  6. M. K. Mahanti, B. Kuotsu, and E. Tiewsoh, Quinolinium Dichromate Oxidation of Diols: A Kinetics Study, J. Org. Chem., 61, 8875-8877 (1996). https://doi.org/10.1021/jo961079m
  7. H. B. Davis, R. M. Sheets, and W. W. Pandler, High Valent Chromium Heterocyclic Complexes-ll: New Selective and Mild Oxidants, Heterocyc-les, 22, 2029-2035 (1984). https://doi.org/10.3987/R-1984-09-2029
  8. M. R. Pressprich, R, D. Willett, and H. B. Davis, Peparation and Crystal Structure of Dipyrazinium Trichromate and Bond Length Correlation for Chromate Anions of the Form $Cr_nO_{3n+1}^^{2-}$, Inorg. Chem., 27, 260-264 (1988). https://doi.org/10.1021/ic00275a009
  9. M. H. Cho, J. H. Kim, and H. B. Park, Kinetic Study of Macrocyclic Ligand-Metal Ion Complexes, J. Korean Chem. Soc., 33, 366-370 (1989).
  10. G. D. Yadav, Mechanistic and Kinetic Investigation of Liquid-Liquid Phase Transfer Catalyzed Oxidation of Benzyl Chloride to Benzaldehyde, J. Phys. Chem., 101, 36-48 (1997). https://doi.org/10.1021/jp961678x
  11. M. K. Mahanti, Kinetics and Mechanism of the Oxidative Cleavage of Unsaturated Acids by Quinolinium Dichromate, Bull. Chem. Soc. Japan, 67, 2320-2322 (1994). https://doi.org/10.1246/bcsj.67.2320
  12. M. K. Mahanti, Quinolinium Dichromate Oxidations Kinetics and Mechanism of the Oxidative Cleavage of Styrenes, J. Org. Chem., 58, 4925-4928 (1993). https://doi.org/10.1021/jo00070a031
  13. I. S. Koo, J. S. Kim, and S. K. An, Kinetic Studies on Solvolyses of Subsitituted Cinnamoyl Chlorides in Alcohol-Water Mixture, J. Korean Chem. Soc., 43, 527-534 (1999).
  14. R. Tayebee, Simple Heteropoly Acids as Water Tolerant Catalysts in the Oxidation of Alcohols with 34% Hydrogen Peroxide, A Mechanistic Approach, J. Korean Chem. Soc., 52, 23-29 (2008). https://doi.org/10.5012/jkcs.2008.52.1.023
  15. R. Y. Sung, H. Choi, and I. S. Koo, Kinetic Studies on the Nucleophilic Substittution Reaction of 4-X-Subsitituted-2,6-dinitrochlorobenzene with Pyridines in MeOH-MeCN Mixtures, Bull. Korean Chem. Soc., 30, 1579-1582 (1988).
  16. Y. S. Kim, H. Choi, and I. S. Koo, Kinetics and Mechanism of Nucleophilic Substittution Reaction of 4-Subsitituted-2,6-dinitrochlorobenzene with Benzylamines in MeOH-MeCN Mixtures, Bull. Korean Chem. Soc., 31, 3279-3282 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3279
  17. M. H. Cho, J. H. Kim, and H. B. Park, Kinetic Study of Macrocyclic Ligand-Metal Ion Complexes, J. Korean Chem. Soc., 33, 366-371 (1989).
  18. G. D. Yadav, Mechanistic and Kinetic Investigation of Liquid-Liquid Phase Transfer Catalyzed Oxidation of Benzyl Chloride to Benz aldehyde, J. Phys. Chem., 101, 36-40 (1997). https://doi.org/10.1021/jp961678x
  19. M. K. Mahanti, Kinetics and Mechanism of the Oxidative Cleavage of Unsaturated Acids by Quinolinium Dichromate, Bull. Chem. Soc. Japan, 67, 2320-2324 (1994). https://doi.org/10.1246/bcsj.67.2320
  20. D. Richard and Gilliom, Physical Organic Chemistry, 169-180 (1992).
  21. M. K. Mahanti, Quinolinium Dichromate Oxidations Kinetics and Mechanism of the Oxidative Cleavage of Styrenes, J. Org. Chem., 58, 4925-4928 (1993). https://doi.org/10.1021/jo00070a031