DOI QR코드

DOI QR Code

PVDF-HFP/이온성 액체 겔 분리막 제조 및 기체 투과도 측정

Preparation and Gas Permeability Measurements of PVDF-HFP/Ionic Liquid Gel Membranes

  • 고영덕 (한밭대학교 화학생명공학과) ;
  • 박두환 (한국에너지기술연구원 온실가스연구실) ;
  • 백일현 (한국에너지기술연구원 온실가스연구실) ;
  • 홍성욱 (한밭대학교 화학생명공학과)
  • Ko, Youngdeok (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Park, Doohwan (Green House Gas Research Center, Korea Institute of Energy Research) ;
  • Baek, Ilhyun (Green House Gas Research Center, Korea Institute of Energy Research) ;
  • Hong, Seong Uk (Department of Chemical and Biological Engineering, Hanbat National University)
  • 투고 : 2014.05.12
  • 심사 : 2014.09.15
  • 발행 : 2014.12.10

초록

상온에서 액체 상태인 이미다졸리움 계열의 이온성 액체에 이산화탄소가 잘 흡수된다는 사실은 잘 알려져 있다. 이러한 이산화탄소의 고용해도 때문에 이온성 액체를 포함하는 분리막은 이산화탄소/질소, 이산화탄소/메탄과 같은 기체 혼합물을 잘 분리할 수 있다. 본 연구에서는 다양한 종류의 이온성 액체를 포함하는 poly(vinylidene fluoride)-hexafluoropropyl copolymer (PVDF-HFP) 겔 분리막을 제조하고 여러 기체의 투과도를 측정하였다. 음이온이 tetrafluoroborate ($BF{_4}^-$)인 경우, 양이온의 탄소수가 증가할수록 이산화탄소의 투과도와 선택도가 모두 감소하였다. 양이온이 1-ethyl-3-methylimidazolium[emim]인 경우, 음이온이 tetrafluoroborate ($BF{_4}^-$)일 때에 비해서 bis(trifluoromethane)sulfoneimide ($Tf_2N^-$)일 때 이산화탄소의 투과도가 2배 정도 증가하였으나, 이산화탄소/질소 및 이산화탄소/메탄의 선택도는 감소하였다. 하지만 이산화탄소/수소 선택도는 두 경우에 거의 비슷하였다.

It is well known that $CO_2$ can be dissolved easily in imidazolium-based room temperature ionic liquids (RTILs). Because of the high $CO_2$ solubility in RTILs, membranes containing RTILs can separate easily gas mixtures such as $CO_2/N_2$ and $CO_2/CH_4$. In this study, we prepared poly(vinylidene fluoride)-hexafluoropropyl copolymer (PVDF-HFP) gel membranes with several RTILs and measured permeabilities of several gases. When the anion of ionic liquids was tetrafluoroborate($BF{_4}^-$), both $CO_2$ permeability and selectivities decreased as the carbon number of the cation increased. When the cation of ionic liquids was 1-ethyl-3-methylimidazolium[emim], $CO_2$ permeability of gel membranes containing bis(trifluoromethane) sulfoneimide($Tf_2N^-$) anion was double compared to those containing tetrafluoroborate($BF{_4}^-$) anion. However, $CO_2/N_2$ and $CO_2/CH_4$ selectivities of the $Tf_2N^-$ case were decreased, whereas the $H_2$ selectivity was almost the same for two cases.

키워드

참고문헌

  1. J. M. S. Henis and M. K. Tripodi, The Developing Technology of Gas Separating Membranes, Science, 220, 11-17 (1983). https://doi.org/10.1126/science.220.4592.11
  2. P. H. Abelson, Synthetic Membranes, Science, 244, 1421 (1989). https://doi.org/10.1126/science.244.4911.1421
  3. C. Liu and C. R. Martin, Composite Membranes from Petrochemical Synthesis of Ultra Thin Polymer Membranes, Nature, 352, 50-52 (1991). https://doi.org/10.1038/352050a0
  4. L. M. Robeson, The Upper Bound Revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  5. M. R. Anderson, B. R. Mattes, H. Reiss, and R. B. Kaner, Conjugated Polymer Films for Gas Separation, Science, 252, 1412-1415 (1991). https://doi.org/10.1126/science.252.5011.1412
  6. S. U. Hong, J. H. Jin, J. Won, and Y. S. Kang, Polymer-Salt Complexes Containing Silver Ions and Their Application to Facilitated Olefin Transport Membrane, Adv. Mater., 12, 968-970 (2000). https://doi.org/10.1002/1521-4095(200006)12:13<968::AID-ADMA968>3.0.CO;2-W
  7. Y. Seo, S. U. Hong, and B. S. Lee, Overcoming the Upper Bound in Polymeric Gas-Separation Membranes, Angew. Chem. Int. Ed., 42, 1145-1149 (2003). https://doi.org/10.1002/anie.200390301
  8. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, B. D. Freeman, and D. J. Cookson, Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions, Science, 318, 254-258 (2007). https://doi.org/10.1126/science.1146744
  9. S. H. Ahn, J. A. Seo, J. H. Kim, Y. Ko, and S. U. Hong, Synthesis and Gas Permeation Properties of Amphiphilic Graft Copolymer Membranes, J. Membr. Sci., 345, 128-133 (2009). https://doi.org/10.1016/j.memsci.2009.08.037
  10. J. I. Choi, C. H. Jung, S. H. Han, H. B. Park, and Y. M. Lee, Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity, J. Membr. Sci., 349, 358-368 (2010). https://doi.org/10.1016/j.memsci.2009.11.068
  11. M. Carta, R. M. Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, and N. B. McKeown, An Efficient Polymer Molecular Sieve for Membrane Gas Separations, Science, 339, 303-307 (2013). https://doi.org/10.1126/science.1228032
  12. H. W. Kim, H. W. Yoon, S. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Choi, and H. B. Park, Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes, Science, 342, 91-95 (2013). https://doi.org/10.1126/science.1236098
  13. W. S. Choi, S. U. Hong, B. Jung, S. W. Kang, Y. S. Kang, and J. H. Kim, Synthesis, Structure and Gas Permeation of Polymerized Ionic Liquid Graft Copolymer Membranes, J. Membr. Sci., 443, 54-61 (2013). https://doi.org/10.1016/j.memsci.2013.04.049
  14. B. D. Freeman, Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes, Macromolecules, 32, 375-380 (1999). https://doi.org/10.1021/ma9814548
  15. C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, and E. J. Maginn, Why Is $CO_2$ So Soluble in Imidazolium-Based Ionic Liquids?, J. Am. Chem. Soc., 126, 5300-5308 (2004). https://doi.org/10.1021/ja039615x
  16. Y. Hou and R. E. Baltus, Experimental Measurement of the Solubility and Diffusivity of $CO_2$ in Room-Temperature Ionic Liquids Using a Transient Thin-Liquid-Film Method, Ind. Eng. Chem. Res., 46, 8166-8175 (2007). https://doi.org/10.1021/ie070501u
  17. J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin, and R. D. Noble, Guide to $CO_2$ Separation in Imidazolium-Based Room-Temperature Ionic Liquids, Ind. Eng. Chem. Res., 48, 2739-2751 (2009). https://doi.org/10.1021/ie8016237
  18. R. Fortunato, C. A. Afonso, M. A.Reis, and J. G. Crespo, Supported liquid membranes using ionic liquids: study of stability and transport mechanisms, J. Membr. Sci., 242, 197-209 (2004). https://doi.org/10.1016/j.memsci.2003.07.028
  19. J. Ilconich, C. Myers, H. Pennline, and D. Luebke, Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for $CO_2$/He separation at temperatures up to $125^{\circ}C$, J. Membr. Sci., 298, 41-47 (2007). https://doi.org/10.1016/j.memsci.2007.03.056
  20. S. U. Hong, D. Park, Y. Ko, and I. Baek, Polymer-Ionic Liquid Gels for Enhanced Gas Transport, Chem. Commun., 7227-7229 (2009).