DOI QR코드

DOI QR Code

Motor Imagery EEG Classification Method using EMD and FFT

EMD와 FFT를 이용한 동작 상상 EEG 분류 기법

  • 이다빛 (가톨릭대학교 디지털미디어) ;
  • 이희재 (가톨릭대학교 디지털미디어) ;
  • 이상국 (가톨릭대학교 디지털미디어)
  • Received : 2014.06.02
  • Accepted : 2014.09.25
  • Published : 2014.12.15

Abstract

Electroencephalogram (EEG)-based brain-computer interfaces (BCI) can be used for a number of purposes in a variety of industries, such as to replace body parts like hands and feet or to improve user convenience. In this paper, we propose a method to decompose and extract motor imagery EEG signal using Empirical Mode Decomposition (EMD) and Fast Fourier Transforms (FFT). The EEG signal classification consists of the following three steps. First, during signal decomposition, the EMD is used to generate Intrinsic Mode Functions (IMFs) from the EEG signal. Then during feature extraction, the power spectral density (PSD) is used to identify the frequency band of the IMFs generated. The FFT is used to extract the features for motor imagery from an IMF that includes mu rhythm. Finally, during classification, the Support Vector Machine (SVM) is used to classify the features of the motor imagery EEG signal. 10-fold cross-validation was then used to estimate the generalization capability of the given classifier., and the results show that the proposed method has an accuracy of 84.50% which is higher than that of other methods.

뇌전도 기반의 뇌-컴퓨터 인터페이스는 향후 손 또는 발과 같은 신체를 대체하거나 사용자의 편의성을 제고하는 등의 다양한 목적으로 여러 산업에서 사용이 될 수 있는 기술이다. 본 논문에서는 경험 모드 분해와 고속푸리에 변환을 통해 동작 상상 뇌전도 신호를 분해하고 특징을 추출하는 방법을 제안한다. 뇌전도 신호 분류 과정은 다음과 같이 3단계로 구성된다. 신호 분해에서는 경험모드분해를 이용하여 뇌전도 신호에 대한 내재모드함수를 생성한다. 특징 추출에서는 파워 스펙트럼 밀도를 이용하여 생성된 내재모드함수의 주파수 대역을 확인한 뒤, 뮤파 대역을 포함하고 있는 내재모드함수에 고속푸리에 변환을 적용하여 움직임 상상에 대한 특징을 추출한다. 특징 분류에서는 서포트 벡터 머신을 사용하여 동작 상상 뇌전도 신호에 대한 특징을 분류하고, 10-교차검증을 통해 분류기의 일반화 성능을 추정한다. 제안하는 방법은 다른 방법들과 비교하여 84.50%의 분류 정확도를 보여주었다.

Keywords

Acknowledgement

Supported by : 가톨릭대학교

References

  1. L. Wei and H. Hu, "Towards Multimodal Human- Machine Interface for Hands-free Control : A survey," Technical Report CES-510, School of Computer Science and Electronic Engineering, University of Essex, UK, 2011.
  2. D. Lee, J. H. Kim, W. H. Jung, H. J. Lee, and S. G. Lee, "EEG-based motor imagery analysis using empirical mode decomposition," Proc. of the Human Computer Interaction 2014, pp. 121-124, 2014. (in Korean)
  3. T. Wu, B. Yang, and H. Sun, "EEG Classification Based on Artificial Neural Network in Brain Computer Interface," Life System Modeling and Intelligent Computing, Communications in Computer and Information Science, Vol. 97, pp. 154-162, 2010.
  4. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, and G. Pfurtscheller, and T. M. Vaughan, "Brain-computer interfaces for communication and control," Electroencephalography and Clinical Neurophysiology, Vol. 113, No. 6, pp. 767-791, Jun. 2002. https://doi.org/10.1016/S1388-2457(02)00057-3
  5. D. Lee and S. G. Lee, "The Study on Movement Imagery EEG Classification using GMM and SVM," Journal of Korean Institute of Information Technology, Vol. 11, No. 7, pp. 67-75, Jul. 2013. (in Korean)
  6. S. Lemm, C. Schafer, and G. Curio, "BCI Competition 2003-Data Set III: Probabilistic Modeling of Sensorimotor mu Rhythms for Classification of Imaginary Hand Movements," IEEE Transactions on Biomedical Engineering, Vol. 51, No. 6, pp. 1077-1080, Jun. 2004. https://doi.org/10.1109/TBME.2004.827076
  7. B. G. Xu and A. G. Song, "Pattern recognition of motor imagery EEG using wavelet transform," Journal of Biomedical Science and Engineering, Vol. 1, No. 1, pp. 64-67, May. 2008. https://doi.org/10.4236/jbise.2008.11010
  8. G. Costantini, M. Todisco, D. Casali, M. Carota, G. Saggio, L. Bianchi, M. Abbafati, and L. R. Quitadamo, "SVM Classification of EEG Signals for Brain Computer Interface," Proc. of the 2009 Conference on Neural Nets WIRN09: Proceedings of the 19th Italian Workshop on Neural Networks, pp. 229-233, May. 2009.
  9. A. R. Cabrera, "Feature Extraction and Classification for Brain-Computer Interfaces," Aalborg: Aalborg University, Denmark, 2009.
  10. A. Schlogl. (2005, Mar 11) [Online]. Available: http://www.bbci.de/competition/iii/
  11. B. Blankertz, K. R. Muller, D. J. Krusienski, G. Schalk, J. R. Wolpaw, A. Schlogl, G. Pfurtscheller, J. D. R. Millan, M. Schroder, and N. Birbaumer, "The BCI competition III: Validating alternative approaches to actual BCI problems," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 14, No. 2, pp. 153-159, Jun. 2006. https://doi.org/10.1109/TNSRE.2006.875642
  12. G. Pfurtscheller and F. H. Lopes da Silva, "Eventrelated EEG/MEG synchronization and desynchronization: basic principles," Clinical Neurophysiology, Vol. 110, No. 11, pp. 1842-1857, Nov. 1999. https://doi.org/10.1016/S1388-2457(99)00141-8
  13. N. E. Huang, Z. Shen, S. R. Long, M. L.Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis," Proc. of the Royal Society of London A, Vol. 454, No. 1971, pp. 903-995, Mar. 1998. https://doi.org/10.1098/rspa.1998.0193
  14. C. Cortes and V. Vapnik, "Support-vector network," Machine Learning, Vol. 20, No. 3, pp. 273-297, Sep. 1995.