DOI QR코드

DOI QR Code

A Transparent Logic Circuit for RFID Tag in a-IGZO TFT Technology

  • Yang, Byung-Do (Department of Electronics Engineering, Chungbuk National University) ;
  • Oh, Jae-Mun (Department of Electronics Engineering, Chungbuk National University) ;
  • Kang, Hyeong-Ju (School of Computer Science & Engineering, Korea University of Technology and Education) ;
  • Park, Sang-Hee (Components & Materials Research Laboratory, ETRI) ;
  • Hwang, Chi-Sun (Components & Materials Research Laboratory, ETRI) ;
  • Ryu, Min Ki (Components & Materials Research Laboratory, ETRI) ;
  • Pi, Jae-Eun (Components & Materials Research Laboratory, ETRI)
  • Received : 2012.11.28
  • Accepted : 2013.03.05
  • Published : 2013.08.01

Abstract

This paper proposes a transparent logic circuit for radio frequency identification (RFID) tags in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) technology. The RFID logic circuit generates 16-bit code programmed in read-only memory. All circuits are implemented in a pseudo-CMOS logic style using transparent a-IGZO TFTs. The transmittance degradation due to the transparent RFID logic chip is 2.5% to 8% in a 300-nm to 800-nm wavelength. The RFID logic chip generates Manchester-encoded 16-bit data with a 3.2-kHz clock frequency and consumes 170 ${\mu}W$ at $V_{DD}=6$ V. It employs 222 transistors and occupies a chip area of 5.85 $mm^2$.

Keywords

References

  1. S.H. Cho et al., "Oxide Thin Film Transistor Circuit for Transparent RFID Applications," IEICE Trans. Electron., vol. E93, no. 10, Oct. 2010, pp. 1504-1510.
  2. N.J. Kirsch et al., "Optically Transparent Conductive Polymer RFID Meandering Dipole Antenna," IEEE Int. Conf. RFID, Orlando, FL, USA, Apr. 27-28, 2009, pp. 278-282.
  3. C.C. Serra et al., "Mirror-Integrated Transparent Antenna for RFID Application," IEEE Antennas Wireless Propag. Lett., vol. 10, 2011, pp. 776-779. https://doi.org/10.1109/LAWP.2011.2163053
  4. E. Cantatore et al., "A 13.56-MHz RFID System Based on Organic Transponders," IEEE J. Solid-State Circuits, vol. 42, no. 1, Jan. 2007, pp. 84-92. https://doi.org/10.1109/JSSC.2006.886556
  5. K. Myny et al., "A 128b Organic RFID Transponder Chip, Including Manchester Encoding and ALOHA Anti-collision Protocol, Operating with a Data Rate of 1529 b/s," IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, USA, Feb. 8-12, 2009, pp. 206-207.
  6. K. Myny et al., "Unipolar Organic Transistor Circuits Made Robust by Dual-Gate Technology," IEEE J. Solid-State Circuits, vol. 46, no. 5, May 2011, pp. 1223-1230. https://doi.org/10.1109/JSSC.2011.2116490
  7. H.-S. Shin et al., "Novel a-Si:H TFT Vth Compensation Pixel Circuit for AMOLED," Proc. ASID, New Delhi, India, Oct. 2006, pp. 466-469.
  8. M. Halik et al., "High-Mobility Organic Thin-Film Transistors Based on ${\alpha}$,${\alpha}$'-didecyloligothiophenes," J. Appl. Phys., vol. 93, no. 5, Mar. 2003, pp. 2977-2981. https://doi.org/10.1063/1.1543246
  9. A.T. Voutsas, "A New Era of Crystallization: Advances in Polysilicon Crystallization and Crystal Engineering," Appl. Surface Sci., vols. 208-209, Mar. 2003, pp. 250-262. https://doi.org/10.1016/S0169-4332(02)01343-0
  10. B.-T. Chen et al., "New Pixel Circuits for Driving Active Matrix Organic Light Emitting Diodes," Solid-State Electron., vol. 50, no. 2, 2006, pp. 272-275. https://doi.org/10.1016/j.sse.2005.12.016
  11. M.K. Ryu et al., "High Performance Thin Film Transistor with Cosputtered Amorphous Zn-In-Sn-O Channel: Combinatorial Approach," Appl. Phys. Lett., vol. 95, no. 7, Aug. 2009, pp. 072104-1-072104-3. https://doi.org/10.1063/1.3206948
  12. C.-S. Hwang et al., "Oxide TFTs for Transparent AMOLED," IMID Dig., Seoul, Rep. of Korea, Oct. 2011, pp. 64-65.
  13. T.-C. Huang et al., "Pseudo-CMOS: A Design Style for Low-Cost and Robust Flexible Electronics," IEEE Trans. Electron. Dev., vol. 58, no. 1, Jan. 2011, pp. 141-150. https://doi.org/10.1109/TED.2010.2088127

Cited by

  1. Bidirectional Communication in an HF Hybrid Organic/Solution-Processed Metal-Oxide RFID Tag vol.61, pp.7, 2013, https://doi.org/10.1109/ted.2014.2320553
  2. The Fabrication of an Applicative Device for Trench Width and Depth Using Inductively Coupled Plasma and the Bulk Silicon Etching Process vol.15, pp.1, 2013, https://doi.org/10.4313/teem.2014.15.1.49
  3. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries vol.105, pp.19, 2013, https://doi.org/10.1063/1.4902068
  4. Analysis of the contact resistance in amorphous InGaZnO thin film transistors vol.107, pp.6, 2015, https://doi.org/10.1063/1.4928626
  5. 3D micro- and nano-machining of hydrogenated amorphous silicon films on SiO2/Si and glass substrates vol.25, pp.7, 2015, https://doi.org/10.1088/0960-1317/25/7/074004
  6. Flexible thin-film NFC tags vol.53, pp.10, 2015, https://doi.org/10.1109/mcom.2015.7295482
  7. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects vol.48, pp.43, 2015, https://doi.org/10.1088/0022-3727/48/43/435104
  8. BCD to 7-segment decoder with oxide thin film transistors vol.52, pp.23, 2013, https://doi.org/10.1049/el.2016.0803
  9. Low-temperature, solution-processed indium-oxide thin-film transistors fabricated by using an ultraviolet-ozone treatment vol.68, pp.8, 2016, https://doi.org/10.3938/jkps.68.971
  10. Densification of a-IGZO with low-temperature annealing for flexible electronics applications vol.110, pp.1, 2017, https://doi.org/10.1063/1.4973629
  11. A Low-Power Analog Adder and Driver Using a-IGZO TFTs vol.64, pp.5, 2013, https://doi.org/10.1109/tcsi.2016.2635442
  12. Low-Power Transparent RFID Circuits Using Enhancement/Depletion Logic Gates Based on Deuterium-Treated ZnO TFTs vol.38, pp.10, 2013, https://doi.org/10.1109/led.2017.2737583
  13. Dynamic Logic Circuits Using a-IGZO TFTs vol.64, pp.10, 2013, https://doi.org/10.1109/ted.2017.2738665
  14. Flexible diodes for radio frequency (RF) electronics: a materials perspective vol.32, pp.12, 2013, https://doi.org/10.1088/1361-6641/aa89ce
  15. A threshold voltage and drain current model for symmetric dual-gate amorphous InGaZnO thin film transistors vol.61, pp.2, 2013, https://doi.org/10.1007/s11432-016-9049-2
  16. Highly stable low-temperature aqueous solution-processed oxide thin-film transistors by the hydrogen injection and oxidation method vol.3, pp.2, 2013, https://doi.org/10.1088/2058-8585/aac125
  17. Toward Temperature Tracking With Unipolar Metal-Oxide Thin-Film SAR C-2C ADC on Plastic vol.53, pp.8, 2013, https://doi.org/10.1109/jssc.2018.2831211
  18. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions vol.57, pp.5, 2013, https://doi.org/10.7567/jjap.57.05gd04
  19. The development of flexible integrated circuits based on thin-film transistors vol.1, pp.1, 2013, https://doi.org/10.1038/s41928-017-0008-6
  20. Ge 2 Sb 2 Te 5 p-Type Thin-Film Transistors on Flexible Plastic Foil vol.11, pp.9, 2013, https://doi.org/10.3390/ma11091672
  21. Manchester‐encoded data transmission circuit integrated by metal-oxide TFTs suitable for 13.56 MHz radio‐frequency identification tag application vol.12, pp.6, 2013, https://doi.org/10.1049/iet-cds.2017.0499
  22. Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors vol.13, pp.5, 2013, https://doi.org/10.1021/acsnano.9b00395
  23. Emerging applications using metal-oxide semiconductor thin-film devices vol.58, pp.9, 2019, https://doi.org/10.7567/1347-4065/ab1868
  24. Amorphous InGaZnO and metal oxide semiconductor devices: an overview and current status vol.7, pp.40, 2019, https://doi.org/10.1039/c9tc03933c
  25. Next Generation Antennas Based on Screen‐Printed and Transparent Silver Nanowire Films vol.7, pp.21, 2013, https://doi.org/10.1002/adom.201900995
  26. A Review of Chipless Remote Sensing Solutions Based on RFID Technology vol.19, pp.22, 2013, https://doi.org/10.3390/s19224829
  27. Significant Performance Improvement of Oxide Thin‐Film Transistors by a Self‐Assembled Monolayer Treatment vol.6, pp.5, 2013, https://doi.org/10.1002/aelm.201901421
  28. 19.5 μW ultra‐low‐power 13.56 MHz RFID tag based on transparent zinc‐oxide thin‐film transistors vol.14, pp.5, 2013, https://doi.org/10.1049/iet-cds.2019.0406
  29. 78‐4: IGZO‐based Identification Tags Communicating with Everyday Touchscreens vol.51, pp.1, 2013, https://doi.org/10.1002/sdtp.14085