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As technology evolves into the deep submicron level, 
synchronous circuit designs based on a single global clock 
have incurred problems in such areas as timing closure 
and power consumption. An asynchronous circuit design 
methodology is one of the strong candidates to solve such 
problems. To verify the feasibility and efficiency of a large-
scale asynchronous circuit, we design a fully clockless 
32-bit processor. We model the processor using an 
asynchronous HDL and synthesize it using a tool 
specialized for asynchronous circuits with a top-down 
design approach. In this paper, two microarchitectures, 
basic and enhanced, are explored. The results from a 
pre-layout simulation utilizing 0.13-μm CMOS technology 
show that the performance and power consumption of the 
enhanced microarchitecture are respectively improved by 
109% and 30% with respect to the basic architecture. 
Furthermore, the measured power efficiency is about  
238 µW/MHz and is comparable to that of a synchronous 
counterpart. 
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I. Introduction 

While semiconductor process technologies and integration 
capabilities have been significantly improved, their design 
complexity and verification costs have rapidly increased. Today, 
most digital circuits are designed using a synchronous design 
methodology, which provides the advantage of easy 
implementation with well-established design infrastructures. 
However, this approach is facing several technical problems. 
As design styles that must include multiple timing domains are 
becoming more and more prevalent, it is difficult to 
synchronize data among domains using a single global clock. 
Moreover, glue logics tend to be sensitive to metastability or 
latency overhead, and the considerable amount of power 
consumed by a clock-related circuit is one of the critical 
limitations for designing low-power circuits. In addition, 
drastic radiation spectra from clock spikes cause 
electromagnetic problems, such as interference. 

An asynchronous circuit synchronizes and transfers data 
with a handshaking protocol instead of using a global clock. In 
an asynchronous circuit, data transfers between adjacent 
modules are localized within the related modules only, and this 
localized timing leads to an average-case delay. Hence, 
theoretically, an asynchronous circuit can guarantee a higher 
performance than synchronous circuits in which the clock 
frequency is determined by the slowest component (worst-case 
delay) [1], [2]. In addition, the absence of a global clock in an 
asynchronous circuit design allows designers to make circuits 
without consideration of the timing closure through clock-tree 
balancing and to implement on-demand operations that are also 
helpful for low-power implementation. Although the 
asynchronous design methodology does not completely 
guarantee low-power circuits, it has been successfully applied 
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in certain applications for the reasons mentioned previously 
[3]-[5]. Furthermore, an asynchronous circuit provides better 
electromagnetic compatibility, which causes less interference 
when using it with a sensitive receiver [1] owing to the 
nonexistence of spikes by a global clock. In addition, the 
characteristic in which every module in an asynchronous 
circuit communicates with one another using a handshake 
protocol assures desirable portability and reusability.  

Although asynchronous circuits have the above merits, there 
are some limitations, such as the generation of hazard control 
signals, testability, and a lack of commercialized asynchronous 
CAD tools. Owing to these limitations, it is generally not easy 
for designers who are accustomed to a synchronous design 
style to make a system fully asynchronous. This may make it 
difficult to meet the time-to-market of a system and can affect 
the productivity of circuit designers during the initial phase of 
an asynchronous style design.  

Since 1990, however, many research groups have been 
studying the implementation of asynchronous circuits and their 
design methodologies to overcome such limitations. Some 
techniques for the implementation of hazard-free asynchronous 
circuits have been developed at Stanford University and 
Columbia University. Phillips has also developed its own 
solution covering the testability of asynchronous circuits and 
applied this solution to its commercial products. In the case of 
CAD tools, the University of Manchester and Columbia 
University have both contributed to the fundamental 
background for the design automation of asynchronous circuits.  

Based on the results from such studies, a number of vendors 
have emerged in the industry that are relevant to asynchronous 
circuit designs, such as Achronix Semiconductor, Elastix, 
Tiempo, Fulcrum Microsystems, Camgian Microsystems, and 
Octasic. They each have their own design flows and 
verification methods and provide solutions for applications 
requiring asynchronous technology. In particular, Handshake 
Solutions, which was a spin-off company from Phillips, 
developed the world’s first commercial asynchronous CAD 
tool, called “TiDE” [6]. TiDE is based on a high-level 
asynchronous hardware description language called “Haste” 
[7]. Both products have been verified using many real 
applications and were successfully utilized in the design of a 
commercial asynchronous ARM9, ARM996HS [8]. In 
addition to commercial asynchronous processors, numerous 
academic research groups, such as the Tokyo Institute of 
Technology [9], the University of Manchester [10], and 
CalTech [11], have developed various styles of asynchronous 
microprocessors, most of which are prototype designs. 

In fact, asynchronous circuits are certainly extending their 
domain as a type of globally asynchronous locally synchronous 
structure with research on efficient asynchronous global 

signaling methods [12]. The international technology roadmap 
for semiconductors expects that circuits using asynchronous 
signaling will account for nearly 50% of the total design types 
by 2025 [13]. 

On the other hand, to prove the usefulness of the 
asynchronous design methodology, the selection of a target 
system is important. Processors are playing a crucial role in 
industry, leading to a significant increase in demand and a 
manifold growth in their areas of application. The processors 
are also key components in digital systems and provide an easy 
way for a comparison among several design methodologies. 
Therefore, we select the processor as a target system. 

When designing a processor, employing an existing 
commercially verified instruction set architecture (ISA) is 
favorable for applications and a verification of the final results. 
The Extended Instruction Set Computer (EISC) ISA [14] from 
AD Chips [15] was designed to reduce the code size and 
frequency of memory access. The high code density 
characteristic of EISC ISA is suited to embedded applications 
in that it requires a small memory area [15]. 

In this study, we design an asynchronous 32-bit processor 
core: Asynchronous Low-power processor based on THe EISC 
Architecture (ALTHEA). ALTHEA is compatible with EISC 
ISA, using the TiDE tool. By achieving this and presenting 
quantitative analyses, our goal is to provide certain lessons that 
should be considered architecturally when designers 
implement an asynchronous pipelined processor, to hence 
show the feasibility of the asynchronous design methodology. 

II. Design Background 

1. Haste and TiDE Flow  

Unlike synchronous design flows, most of which start from 
register transfer level specifications, TiDE accepts behavioral 
specification using Haste and hence allows designers to expend 
considerably less time and effort to make a circuit. However, a 
drawback when using Haste is that designers are not free from 
optimizing a circuit below the stage of the behavioral synthesis. 
The designers can only participate in describing the circuit with 
Haste, and it is very difficult to control the synthesis process at 
a fine-grain level because constraints are made manually. 
Nevertheless, TiDE is well known for being the most 
successful asynchronous design flow among language-based 
methods, owing to its ease of design and its stability for 
implemented circuits. 

TiDE synthesizes a high-level specification described by 
Haste into an asynchronous gate-level netlist, as in [16], in 
which a compiler translates high-level languages into Verilog 
netlists. The base handshake protocol in TiDE is a four-phase  
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Fig. 1. TiDE tool flow. 
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bundled data assumption [17]. Figure 1 shows the design flow 
of TiDE. First, TiDE initially converts a Haste description into 
a corresponding Verilog netlist through a behavioral synthesis 
process. After the behavioral synthesis, TiDE optimizes the 
netlist by interacting with other conventional electronic design 
automation (EDA) tools. It also creates scripts and constraints 
to control the EDA tools to fabricate an ASIC from the netlist. 

The behavioral synthesis process consists of generating 
handshake circuits and mapping them to standard cells. 
Handshake circuits are transformed from Haste descriptions 
using a syntax-directed compiling method [18]. The method 
converts every operator in a Haste specification into predefined 
components one by one. In the mapping step, the handshake 
circuits are synthesized into a netlist by mapping those 
components to standard cells according to a target technology. 
All components in TiDE are stored in a cell library DB 
targeting a certain technology, and each component has its own 
symbol, signal ordering, and schematic design. They are 
mainly used in the synthesis of control circuits and support 
various types of protocols based on a four-phase signaling. 
Representative components include a sequencer, parallel 
component, and repeater to respectively allow perpetual access 
in turn, simultaneously, and repetitively. In addition, TiDE has 
various components, such as a fork, join, merge, mux, and 
demux [6]. 

Figure 2 shows an example of a Haste code, its handshake 
circuit, and its implementation generated after synthesis. In the 
specification, the inner part between “forever do” and “od” 
iterates infinitely, and the operator “?” represents a channel 
input from left to right. That is, the data from channel “b” is 
stored into variable “x.” The operator “:=” represents a variable 
assignment from right to left, that is, storing the result of the 
functional circuit into variable “y.” This circuit consists of a 
repeater, a sequencer, and variable components.  

In Fig. 2, the gray box in the handshake circuit represents a 
synthesis into the netlist shown in the blocks with the dotted 
lines. The functional circuit component includes a delay 
element to synchronize a data validation with an 
acknowledgement (ACK) signal. In addition, a variable  

 

Fig. 2. Example of Haste code, handshake circuit, and their
implementation. 
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component has a delay element to guarantee a hold time. 

2. EISC Architecture 

The EISC architecture processes 32-bit data with a native 
16-bit instruction set. Because the EISC architecture utilizes 
16-bit instructions, the density of the instruction code is quite 
high. According to the research in [15], the code density of the 
EISC architecture is 6.5% and 11.5% higher than that of the 
ARM THUMB and MIPS16, respectively.  

Generally, a 32-bit reduced instruction set computer (RISC) 
processor using a 16-bit compressed instruction set requires a 
mechanism to deal with 32-bit immediate data. This 
occasionally causes inefficiency in making long-bit immediate 
values with small-bit opcodes because several memory access 
operations must be executed for a single operand of data. The 
EISC architecture has a special instruction, that is, a load 
extension register immediate (LERI), to minimize memory 
access. The LERI instruction consists of a 2-bit opcode and 
14-bit immediate value fields. A 32-bit immediate value is 
composed of a maximum of three consecutive LERI 
instructions. There is no need for additional operations to form 
a 32-bit immediate value as in any other 32-bit processor with a 
16-bit instruction set. This leads to 35.1% and 37.3% 
reductions in the data memory access rate compared to the 
ARM THUMB and MIPS16, respectively [15]. 

Another distinguishing feature of the EISC architecture with 
a 32-bit data bus and 16-bit instruction set is that the instruction 
fetch rate is twice that of the execution rate, on average, since 
two instructions are fetched in a single clock cycle.  

These two typical characteristics lead to the generation of 
buffering instructions and immediate values before transferring 
them to the decode stage. In a pipelined structure with the 
EISC architecture, the instruction fetch stage can be decoupled 
from the decoding stage with an instruction queue.  

Finally, another characteristic of the EISC architecture is as 
follows. The EISC architecture has 16 general-purpose 
registers, nine special-purpose registers, and three stack 
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pointers [14]. Most of the instructions are of RISC style, but 
some are of complex instruction set computer (CISC) style (for 
example, PUSH and POP). Their processing in ALTHEA will 
be presented later in this paper. 

III. Basic Asynchronous Microarchitecture of ALTHEA 
Processor 

1. Pipeline Stages 

A five-stage pipeline with six functional blocks is the basic 
microarchitecture of ALTHEA, as shown in Fig. 3. The five 
stages are the instruction fetch (IF), decode (DE), execution 
(EX), memory (ME), and write back operations. Four of the 
five stages in the pipeline steps are in accordance with four 
functional blocks, and two additional blocks are a register file 
(RF) and coprocessor (CP). 

All communication between blocks, as well as data transfers 
among subblocks in a functional block, is performed by an 
asynchronous protocol based on a four-phase bundled data 
assumption. Handshake channels separating each stage and 
block are depicted as simple data signals in Fig. 3. However, 
they accompany request (Sr, Rr) and ACK (Sa, Ra) signals of a 
sender and a receiver to control data transfers during 
implementation, as described in the lower section of Fig. 3.  

Each functional block in the basic microarchitecture 
generates a valid or dummy output to send to its receiving 
blocks every cycle, regardless of the need for data transfers. By 
marking and delivering a valid bit added to a corresponding 
handshake channel, a sender indicates to the receiver whether 
the current transferred data is effective or not. This concept is 
similar to that of the data transfer between stages on a 
synchronous pipeline and is used for the basic architecture to 
ensure design ease. 

The characteristics of the architectural viewpoint in the basic 
microarchitecture of ALTHEA can be summarized as follows: 

• typical RISC style five-stage pipeline;  
• Harvard architecture; 
• asynchronous communication among blocks; 
• decoupled IF stage; 
• register file access through handshake channels; 
• data transfer with valid bits similar to a synchronous one. 

2. Operation of Each Block 

The IF block consists of three functional units and two 
queues between them, the prefetcher and LERI folding unit 
fetches instructions. If the fetched instruction is an LERI, it 
collects consecutive LERI instructions to form a temporary 
instruction and store the instruction into a fetch queue. The  

 

Fig. 3. Basic asynchronous microarchitecture of ALTHEA. 
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predecoder unit then reads a temporary instruction from the 
fetch queue, decodes it, generates a final instruction, and stores 
the instruction in the instruction queue. When informed that the 
instruction sent is a branch instruction or whether the IF block 
should be halted, the branch handler unit deals with the branch 
or the halting case. 

The DE block performs three major functions: decoding the 
instructions from the IF block, accessing the register file, and 
preparing the operands. Each instruction from the IF block 
contains additional predecoding information that indicates one 
of 13 groups that the instruction belongs to. The DE block of 
ALTHEA has 13 individual subdecoders that are in accordance 
with each instruction group. Since a newly arrived instruction 
is decoded in only one of the subdecoders, other subdecoders 
are prohibited to operate. This reduces additional signal 
transitions and dynamic power consumption. 

After the decoding process, access to register files and a 
generation of pipeline control commands are provided. The DE 
block sends the address of the source registers and destination 
lock information to the RF block. Finally, the operands and 
control information that are required from the EX and the ME 
block are generated. 

The RF block has 16 general-purpose registers and nine 
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special-purpose registers. Unlike the register file designed 
using a synchronous method, there is no way to know when 
the correct value is written back to the register in an 
asynchronous register file. Note that the execution time of each 
pipeline stage in ALTHEA varies according to the type of 
instruction and whether there is data dependency. The RF 
block in ALTHEA provides a special locking mechanism [19] 
to prevent malfunctions in reading from and writing to the 
same register. When the DE block tries to apply a read access 
to a certain register, the operand fetch operation is postponed 
until the corresponding lock bit of the register is set to a valid 
state, meaning that the write access of the previous instruction 
to the same register is complete. The RF block has multiple 
read and write ports to access the registers simultaneously. 
Contrary to the EISC architecture, the RF block is separated 
from the DE block in ALTHEA to reduce the complexity of the 
DE block. 

Arithmetic operations with operands are done in the EX 
block, which consists of several execution units, such as a 
shifter, an ALU, and a multiplier. According to the control 
signals from the DE block, only one execution unit is selected. 
In the case of a MOVE instruction group, data is bypassed to 
perform a simple register-to-register data transfer. Each 
execution unit chooses its operands among four handshake 
channels based on the valid bits located on the channels. Most 
of the instructions employ one or two operand values, but the 
STORE and MULTIPLY instruction groups take three and four 
operand values, respectively. The four-bit status values that 
reflect the final result of an execution are forwarded to the DE 
block through a handshake channel to handle conditional 
branches. 

The ME block provides an interface with data memory to the 
LOAD or STORE instruction groups. In addition, automatic 
additive and subtractive calculations for a stack pointer, which 
indicates the memory address of the PUSH/POP instruction 
groups, are carried out in this block. Including a bypass route 
from the EX block, three final results of the ME block are 
conveyed to the RF block, accompanied by three individual 
handshake channels with valid bits.  

Finally, the CP block supports the instruction to control a 
coprocessor and exchange state information. The CP block has 
peculiar but simple register files and functional units. 

3. Performance Analysis of Each Block 

Figure 4 shows the normalized performance of each block 
based on the standards of the best-case throughput in the CP 
block when the basic microarchitecture is designed and 
synthesized at the gate level. The performance of the CP block 
in which relatively simple operations are executed is the 

 

Fig. 4. Normalized performance of each block. 
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Fig. 5. Power consumption of each block. 
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highest. The IF block also has a very short cycle time since the 
inner operations of the predecoding or LERI folding and the 
external channel output to the DE block run concurrently, 
owing to a four-stage instruction queue. However, these two 
blocks do not influence the performance improvement of the 
entire system. The occurrence rate of instructions related to a 
coprocessor is remarkably low, and the CP block does not 
work in accordance with the main pipeline. Furthermore, the IF 
block fetches instructions and stores them in the queue in 
advance until the queue becomes full, regardless of the pipeline 
states.  

On the other hand, the result indicates that the DE and RF 
blocks have low performances. Two major reasons for the 
performance degradation in the RF block are the register 
locking mechanism for resolving a data dependency and the 
arbitration between the read and write operations that occurs at 
a register file asynchronously. In the case of the DE block, the 
complexity of decoding the EISC instructions, additional 
channel communications for the register locking mechanism 
with the RF block, and dealing with branch instructions are the 
main reasons for the increased cycle time.  

Clearly, the entire performance of the basic version of 
ALTHEA is vulnerable to this unbalanced pipeline structure in 
that the throughput of the pipeline totally depends on its 
slowest stage. The dispersion of power consumption, which 



ETRI Journal, Volume 35, Number 3, June 2013 Myeong-Hoon Oh et al.   485 

consists of static and dynamic features in each block, is shown 
in Fig. 5. The dissipated power of the IF block is the largest 
among all blocks because it always works on fetching  
instructions from memory, predecoding them, and managing 
an instruction queue as long as the queue is not full. The RF 
block, which most of the instructions access in reading the 
operands and writing the resulting data, consumes a 
considerable amount of power.  

Comparing the DE block with the EX block, which 
performs real arithmetic operations, the dynamic power of the 
former is three times greater than the latter. It is inferred from 
this observation that the internal functions of the DE block 
must have a complicated design, making the occurrence of 
redundant activities possible. The amount of leakage power in 
each block is directly associated with its area. The EX block 
has the largest area among all the blocks.  

The lesson learned from two prior evaluations with each 
block is to improve the DE and RF blocks so as to 
preferentially balance all stages. The next section explains this 
in detail. 

IV. Enhanced Asynchronous Microarchitecture of 
ALTHEA Processor 

1. Considerations for Enhancement 

In the case of the DE block, complex decoding circuitries 
caused by an irregular opcode field of EISC ISA and intricate 
control schemes used to process a CISC-style instruction (for 
example, multi-operand PUSH/POP) are the major reasons for 
a degraded performance. In addition, many arbitrations among 
the read and write requests and the dependency resolution by 
the register locking mechanism have a decisive effect on the 
performance of the RF block. The complex structure also 
hinders a further reduction of the power consumption in the DE 
and RF blocks. In addition, channels unnecessarily 
communicating among blocks can lead to an increase in 
dynamic power. To raise the performance and reduce power 
consumption, an enhanced microarchitecture is developed and 
tested. Some major considerations for an enhanced version of 
the ALTHEA microarchitecture are summarized as follows:  

• addition of a pipeline stage between IF and DE blocks to 
segment complex CISC instructions into simple multiple 
RISC instructions; 

• separation of the DE block into two pipeline stages; 
• simplified arbitration scheme for read and write operations 

in the RF block; 
• on-demand handshake channels that only communicate 

with each other when necessary. 
A block diagram of the enhanced microarchitecture of  

 

Fig. 6. Enhanced asynchronous microarchitecture of ALTHEA. 
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ALTHEA is depicted in Fig. 6, and details of the enhancements 
are explained in the following subsections. 

2. CISC Instruction Segmentation 

The EISC instruction set contains some CISC-style 
instructions. These instructions require multicycle execution on 
a single instruction; thus, they need a finite state machine 
(FSM) to execute. In the basic microarchitecture, the FSM 
slows down the speed of the decoder because of added 
complexity in identifying CISC instructions and managing 
state transitions. To improve the performance related to the 
execution of CISC instructions, a dedicated pipeline stage, 
namely an ID (IF/DE inter-pipe) block, is added between the 
IF and DE blocks. The main purpose of the ID block is to 
identify a CISC instruction and segment the instruction into 
multiple single-RISC instructions with a single operand. 

When the ID block receives a new instruction from the IF 
block, the ID block identifies the CISC instruction first. If the 
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Table 1. Example of CISC instruction segmentation. 

Basic Microarchitecture Enhanced Microarchitecture 

PUSH   %R00, %R01, %R02 

PUSH   %R00    // First of push 

PUSH   %R01    // Middle of push

PUSH   %R02    // End of push 

POP     %R02, %R01, %R00 

POP     %R00    // First of pop 

POP     %R01    // Middle of pop

POP     %R02    // End of pop 

 

 
instruction is a normal RISC instruction, then it is forwarded to 
the next stage without any modifications. On the contrary, if the 
instruction is of the PUSH/POP instruction group, the ID block 
divides the instructions, as described in Table 1. Eliminating the 
FSM for CISC instructions in the DE block of the enhanced 
microarchitecture results in simple and fast operations for the 
decoding instructions. 

3. DE Block Partition 

As stated in the previous section, in the basic 
microarchitecture, three main functions (instruction decoding, 
RF access, and operand and control generation) are performed 
in the DE block. Among these major functions, the RF access 
process is longest, followed by the operand and control 
generation process. To improve the performance of the DE 
block, we divide the block into two. One is the DE1 block, 
which is used to decode instructions, request access to a 
register file, and generate control signals. The other is the DE2 
block, which is used to obtain data from the register file and 
create operands. This separation can contribute to maintaining 
better balance in the pipeline by reducing the difference 
between stage latencies. Also, we can save additional time in 
the channel communications when accessing the register file 
by overlapping the processes of the RF block between the DE1 
and DE2 blocks.  

Figure 7 shows a comparison between the basic and 
enhanced microarchitectures with an example of a typical 
two-operand instruction. In this case, Inst0 is 
“ADD %R01, %R00.” In the basic version, the three 
processes consume 17.2%, 50.5%, and 32.3% of the total 
execution time, respectively, and the execution time of Inst0 
in the DE stage is about 62.7 ns, as shown in Fig. 7(a). On the 
contrary, Fig. 7(b) shows that the latency for Inst0 in the DE1 
stage is remarkably reduced to 13.9 ns in the enhanced 
version, owing to a large decrease in the time for RF access. 
Actually, the ratio of the time consumption for the RF request 
becomes only 24.6%. See the ratio of time for RF access 
(50.5%) in the basic version. 

 

Fig. 7. Enhancement in DE block. 
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4. Structural Enhancement of RF Block  

Because of its complexity in dealing with the generation of 
multiple operands and the prevention of data hazards in the 
pipeline, the register file is also one of the performance 
bottlenecks in a basic microarchitecture. In EISC ISA, the 
maximum required number of read operands is four in the case 
of a multiply instruction. In a write back stage, two 32-bit write 
data ports are required to store 64-bit multiplication data, and 
one write data port indicates a stack point for the execution of 
multi-operand PUSH/POP instructions.  

In a basic microarchitecture, registers in the RF block are 
designed in the form of a global register array using the Haste 
keyword “ramreg array.” A conceptual block diagram 
representing the keyword “ramreg array” is shown in Fig. 8(a). 
The register array supports only one read operation or one 
write operation at a given time. Therefore, all read access 
operations and all write access operations should be serialized. 
Indeed, arbitration circuits between read and write requests 
cannot help being complex for correct operations since read 
and write requests are generated regardless of the DE and ME 
stages, respectively. Finally, if one of the read requests has an 
unresolved data dependency, the rest of the requests to the RF 
block are suspended until the data dependency is solved 
because all requests are serialized. 

To overcome these obstacles, we redesign the RF block in a 
manner in which a single global array is changed into 25 
individual 32-bit registers and lock registers, as shown in  



ETRI Journal, Volume 35, Number 3, June 2013 Myeong-Hoon Oh et al.   487 

 

Fig. 8. Enhancement in RF block. 
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Fig. 8(b). By separating the registers, any register can be 
independently and simultaneously accessed by read or write 
requests as long as there is no data dependency. Performance 
degradations owing to a pause in RF access, caused by 
serializing requests, are soothed.  

Another modification in the RF block is that all read requests 
are merged into a single handshake channel. Separated 
handshake channels in a basic microarchitecture cause a 
sophisticated arbitration circuitry and slow down the access 
time. By removing arbitrations for read requests and separating 
the registers, the access time can be reduced. 

5. On-Demand Channel 

Data transfers between blocks through handshake channels 
in a basic microarchitecture are done in such a way that a 
receiver block unconditionally latches onto input data at every 
handshake communication, whether it performs operations 
with the data or not. The receiver block distinguishes the 
effective input data using the value in the separate valid bit on 
each handshake channel. Therefore, both the sender block and 
the receiver block must perform meaningless channel 
communications in cases of invalid transfers. This operation 
has a baleful influence on both the performance and power 
consumption of ALTHEA. In other words, by activating the 
channels only when data transfers are required, we can reduce 
unnecessary access and contribute to a faster and low-powered  

Table 2. Example of channel description. 

 Basic microarchitecture Enhanced microarchitecture

DE

or

DE2

If (Opa and Opb condition) 

valida = 1 || validb = 1 

 || validc = 0 || validd = 0 

. . . . 

;   Opa ! {valida, opa_reg} 

||  Opb ! {validb, opb_reg} 

||  Opc ! {validc, 32’h00000000} 

||  Opd ! {validd, 32’h00000000} 

If (Opa and Opb condition) 

Opa ! opa_reg  

||  Opb ! opb_reg  

 

EX

Opa_ex ? opa  

||  Opb_ex ? opb  

||  Opc_ex ? opc  

||  Opd_ex ? Opd  

;if (operanda and b is needed) 

   if (Opa_ex[32]==1) 

     operanda = Opa_ex[31:0] 

|| if (Opb_ex[32]==1) 

     operandb =Opb_ex[31:0]  

If (operanda and b is needed)

  operanda ? Opa  

||  operandb ? Opb  

 

 

 
ALTHEA. 

Table 2 explains this on-demand style of channel 
communication as an example of data transfers between the 
DE and EX blocks. For some input channels (Opa, Opb, Opc, 
and Opd) of the EX block, Haste-based pseudocodes describe 
the behaviors of the DE and EX blocks according to both 
microarchitectures in executing an instruction using two 
operands, operanda and operandb. In the DE block of a basic 
microarchitecture, at the checking step of the output conditions 
of both Opa and Opb, valid values of each channel (valida, 
validb, validc, validd) are set to high or low. All channels 
containing each valid bit are activated simultaneously and 
latched onto an internal register (Opa_ex, Opb_ex, Opc_ex, 
Opd_ex) in the EX block. Finally, it uses operand data values 
(operanda, operandb) by checking the valid bits. However, in 
the enhanced microarchitecture, only the required operands are 
transferred without communication of Opc and Opd.  

The on-demand-style channel is more favorable for fast and 
low-powered communication between the DE and EX blocks. 
In fact, all the instructions in ALTHEA except a multiply 
instruction group use one or two operands, and it is thus highly 
reasonable to prevent all channel communication from 
occurring, especially Opc and Opd. 

V. Design and Simulation 

1. Design Flow and Simulation Environment  

The left side of Fig. 9 illustrates the design flow of ALTHEA  
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Fig. 9. Design, verification, and power estimation flow of 
ALTHEA. 
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based on TiDE. The initial source codes described with Haste 
are compiled into handshake circuits and converted to gate-
level netlists by htcomp and htmap commands, respectively. To 
optimize the netlists, TiDE supports htlog and htpost 
commands, which are used to generate partially compact 
netlists in terms of area and several constraint files to operate 
together with standard EDA tools. Finally, we obtain an 
integrated netlist at a pre-layout level with Synopsys Design 
Compiler. Also, standard delay format files are generated by an 
httime command and Synopsys PrimeTime for a more realistic 
timing simulation. The employed technology is a UMC 
0.13-μm CMOS process. 

The verification environment of ALTHEA at a pre-layout 
level is shown on the right side of Fig. 9. Using a compiler of 
the EISC architecture, we generate ROM codes of the 
corresponding benchmark programs of MiBench [20] and 
Dhrystone [21] suite and insert the binary codes into a Verilog 
test code for instantiating the optimized Verilog netlist from the 
TiDE tool flow. To confirm the functionality, we check the 
level of HALT instruction at the timing simulation with a 
Cadence NC-Verilog simulator after inserting test codes that 
generate the zero halt level at the end of each benchmark 
program. The bottom of Fig. 9 shows the flow used to estimate 
dynamic power consumption at the gate level. We also verify 
our designs on FPGA by using the verification flow that the 
TiDE tool provides [6]. 

 

Fig. 10. Performance comparison using various benchmarks. 
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Fig. 11. Latency comparison of each block. 
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2. Simulation Results 

To analyze the effect of architectural considerations in terms 
of performance and power consumption, we measure the 
quantitative results of the basic and the enhanced versions of 
ALTHEA.  

Figure 10 shows the equivalent clock frequencies of each 
version in executing various benchmark programs based on the 
standards of the maximum clock frequency of synchronous 
AE32000.  

In the enhanced version, a division of the DE block of the 
basic version into three blocks (ID, DE1, DE2) and a 
modification of the RF block clearly reduces the latencies of 
the DE and RF blocks. Although two additional handshake 
channels are added from the ID block to the DE2 block, this 
improvement in the structural level leads to a 109% 
performance increase on average compared with the basic 
version. Actually, as in Fig. 11, which shows the latency in 
each block of both versions, all blocks in the enhanced version 
have a shorter time, and, in particular, the latency of the DE 
block, which is a bottleneck in the performance, decreases 
greatly.  

The EX block has the largest latency (20 ns) in the enhanced 
version, so the maximal throughput is around 50 MHz 
(1/20 ns) by rule of thumb with an ideal assumption of a  
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Table 3. Power comparison. 

Power consumption (mW) 
Version 

Best Normal Worst 

Basic 16.5 7.9 3.9 

Intermediate 6.9 3.5 1.9 

Enhanced 11.6 5.9 3.0 

 

 
pipeline structure. However, the average measured 
performance, as shown in Fig. 10, is about 36 MHz, and the 
difference between the maximal expectation and real 
observation seems to be large. The major cause for this gap is 
that the enhanced version resolves data dependency problems 
by stalling the pipeline with the register locking mechanism.  

Before making a power comparison between two versions of 
ALTHEA, we measure the power consumption of the 
“intermediate” version, which adopts only on-demand 
channels and the ID stages to evaluate the power impact of the 
architectural considerations described in section IV. Table 3 
lists the power measurement for the three versions regarding 
the three corner conditions. The reduction ratio of the power 
consumption in the intermediate version compared with the 
basic version is nearly 60%. Changing all handshake 
communications into on-demand channels can significantly 
save dissipated power during unnecessary data transfers 
between blocks. Furthermore, the logics of the DE block are 
simplified by removing operations related with the PUSH/POP 
group, and non-PUSH/POP instructions can bypass the ID 
stage.  

The reason for a greater power consumption in the enhanced 
version compared with the intermediate version is that the RF 
block becomes more complex, and the switching activity of the 
blocks and channels increase at the same rate as the 
performance improvement. However, the enhanced version 
still reduces 30% of the power consumption compared with the 
basic version. Accordingly, it is found that the enhanced 
version has the best power efficiency, and its value is calculated 
at 238 µW/MHz for a normal case. 

A commercialized synchronous AE32000 was fabricated 
using 0.18-μm CMOS technology, and its maximum working 
clock frequency is 140 MHz [15]. It was also reported that the 
simulated power efficiency of the AE32000 core without a 
cache is about 400 µW/MHz. Although a fair comparison is 
impossible owing to the different technologies, it is probable 
that the ALTHEA of the enhanced version is competitive with 
its synchronous counterpart in terms of power efficiency. As for 
the performance, we can apply a data forwarding mechanism 
for solving data dependencies, as in normal synchronous 

pipelined processors. Thus, we are expecting that ALTHEA’s 
maximum equivalent clock frequency can reach or surpass that 
of ARM966HS (77 MHz) [8], which is a 32-bit asynchronous 
commercial ARM processor and was designed using the same 
design flow of TiDE.  

VI. Conclusion and Future Work 

In this paper, we designed and verified a 32-bit clockless 
processor core (ALTHEA) at a pre-layout level using an 
asynchronous HDL and a top-down design and verification 
flow. 

Based on the basic microarchitecture, which consists of six 
blocks for a five-stage pipeline, we tried to ascertain any 
problems and suggested their solutions in terms of an 
architectural view. Finally, we designed an enhanced version of 
ALTHEA based on a seven-stage pipeline structure, after 
applying several ideas.  

Simulation results show that the performance and power 
consumption of the enhanced version increases by 109% and 
decreases by 30%, respectively. The measured power 
efficiency of ALTHEA is about 238 μW/MHz, which is a 
value competitive with that of a synchronous EISC processor.  

For our future work, we will try to make pipeline stages 
more harmonious to reduce the latency difference among all 
stages and employ a simple forwarding scheme to resolve data 
hazards efficiently. We will also consider applying a 
bottom-up-based design methodology in which designers can 
get involved in all of the design stages, unlike TiDE tool flow. 
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