
480 Myeong-Hoon Oh et al. © 2013 ETRI Journal, Volume 35, Number 3, June 2013

As technology evolves into the deep submicron level,
synchronous circuit designs based on a single global clock
have incurred problems in such areas as timing closure
and power consumption. An asynchronous circuit design
methodology is one of the strong candidates to solve such
problems. To verify the feasibility and efficiency of a large-
scale asynchronous circuit, we design a fully clockless
32-bit processor. We model the processor using an
asynchronous HDL and synthesize it using a tool
specialized for asynchronous circuits with a top-down
design approach. In this paper, two microarchitectures,
basic and enhanced, are explored. The results from a
pre-layout simulation utilizing 0.13-μm CMOS technology
show that the performance and power consumption of the
enhanced microarchitecture are respectively improved by
109% and 30% with respect to the basic architecture.
Furthermore, the measured power efficiency is about
238 µW/MHz and is comparable to that of a synchronous
counterpart.

Keywords: Clockless processor, asynchronous circuit,
asynchronous HDL, mircoarchitecture, EISC, TiDE,
Haste.

Manuscript received Sept. 7, 2012; revised Dec. 24, 2012; accepted Jan. 11, 2013.
Myeong-Hoon Oh (phone: +82 42 860 1654, mhoonoh@etri.re.kr), Young Woo Kim

(bartmann@etri.re.kr), and Chi-Hoon Shin (cshin@etri.re.kr) are with the Software Research
Laboratory, ETRI, Daejeon, Rep. of Korea.

Sanghoon Kwak (kwsh@sogang.ac.kr) is with the Department of Electronics Engineering,
Sogang University, Seoul, Rep. of Korea.

Sung-Nam Kim (ksn@etri.re.kr) is with the IT Convergence Technology Research
Laboratory, ETRI, Daejeon, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.13.0112.0598

I. Introduction

While semiconductor process technologies and integration
capabilities have been significantly improved, their design
complexity and verification costs have rapidly increased. Today,
most digital circuits are designed using a synchronous design
methodology, which provides the advantage of easy
implementation with well-established design infrastructures.
However, this approach is facing several technical problems.
As design styles that must include multiple timing domains are
becoming more and more prevalent, it is difficult to
synchronize data among domains using a single global clock.
Moreover, glue logics tend to be sensitive to metastability or
latency overhead, and the considerable amount of power
consumed by a clock-related circuit is one of the critical
limitations for designing low-power circuits. In addition,
drastic radiation spectra from clock spikes cause
electromagnetic problems, such as interference.

An asynchronous circuit synchronizes and transfers data
with a handshaking protocol instead of using a global clock. In
an asynchronous circuit, data transfers between adjacent
modules are localized within the related modules only, and this
localized timing leads to an average-case delay. Hence,
theoretically, an asynchronous circuit can guarantee a higher
performance than synchronous circuits in which the clock
frequency is determined by the slowest component (worst-case
delay) [1], [2]. In addition, the absence of a global clock in an
asynchronous circuit design allows designers to make circuits
without consideration of the timing closure through clock-tree
balancing and to implement on-demand operations that are also
helpful for low-power implementation. Although the
asynchronous design methodology does not completely
guarantee low-power circuits, it has been successfully applied

Architectural Design Issues in a Clockless 32-Bit
Processor Using an Asynchronous HDL

 Myeong-Hoon Oh, Young Woo Kim, Sanghoon Kwak, Chi-Hoon Shin, and Sung-Nam Kim

ETRI Journal, Volume 35, Number 3, June 2013 Myeong-Hoon Oh et al. 481

in certain applications for the reasons mentioned previously
[3]-[5]. Furthermore, an asynchronous circuit provides better
electromagnetic compatibility, which causes less interference
when using it with a sensitive receiver [1] owing to the
nonexistence of spikes by a global clock. In addition, the
characteristic in which every module in an asynchronous
circuit communicates with one another using a handshake
protocol assures desirable portability and reusability.

Although asynchronous circuits have the above merits, there
are some limitations, such as the generation of hazard control
signals, testability, and a lack of commercialized asynchronous
CAD tools. Owing to these limitations, it is generally not easy
for designers who are accustomed to a synchronous design
style to make a system fully asynchronous. This may make it
difficult to meet the time-to-market of a system and can affect
the productivity of circuit designers during the initial phase of
an asynchronous style design.

Since 1990, however, many research groups have been
studying the implementation of asynchronous circuits and their
design methodologies to overcome such limitations. Some
techniques for the implementation of hazard-free asynchronous
circuits have been developed at Stanford University and
Columbia University. Phillips has also developed its own
solution covering the testability of asynchronous circuits and
applied this solution to its commercial products. In the case of
CAD tools, the University of Manchester and Columbia
University have both contributed to the fundamental
background for the design automation of asynchronous circuits.

Based on the results from such studies, a number of vendors
have emerged in the industry that are relevant to asynchronous
circuit designs, such as Achronix Semiconductor, Elastix,
Tiempo, Fulcrum Microsystems, Camgian Microsystems, and
Octasic. They each have their own design flows and
verification methods and provide solutions for applications
requiring asynchronous technology. In particular, Handshake
Solutions, which was a spin-off company from Phillips,
developed the world’s first commercial asynchronous CAD
tool, called “TiDE” [6]. TiDE is based on a high-level
asynchronous hardware description language called “Haste”
[7]. Both products have been verified using many real
applications and were successfully utilized in the design of a
commercial asynchronous ARM9, ARM996HS [8]. In
addition to commercial asynchronous processors, numerous
academic research groups, such as the Tokyo Institute of
Technology [9], the University of Manchester [10], and
CalTech [11], have developed various styles of asynchronous
microprocessors, most of which are prototype designs.

In fact, asynchronous circuits are certainly extending their
domain as a type of globally asynchronous locally synchronous
structure with research on efficient asynchronous global

signaling methods [12]. The international technology roadmap
for semiconductors expects that circuits using asynchronous
signaling will account for nearly 50% of the total design types
by 2025 [13].

On the other hand, to prove the usefulness of the
asynchronous design methodology, the selection of a target
system is important. Processors are playing a crucial role in
industry, leading to a significant increase in demand and a
manifold growth in their areas of application. The processors
are also key components in digital systems and provide an easy
way for a comparison among several design methodologies.
Therefore, we select the processor as a target system.

When designing a processor, employing an existing
commercially verified instruction set architecture (ISA) is
favorable for applications and a verification of the final results.
The Extended Instruction Set Computer (EISC) ISA [14] from
AD Chips [15] was designed to reduce the code size and
frequency of memory access. The high code density
characteristic of EISC ISA is suited to embedded applications
in that it requires a small memory area [15].

In this study, we design an asynchronous 32-bit processor
core: Asynchronous Low-power processor based on THe EISC
Architecture (ALTHEA). ALTHEA is compatible with EISC
ISA, using the TiDE tool. By achieving this and presenting
quantitative analyses, our goal is to provide certain lessons that
should be considered architecturally when designers
implement an asynchronous pipelined processor, to hence
show the feasibility of the asynchronous design methodology.

II. Design Background

1. Haste and TiDE Flow

Unlike synchronous design flows, most of which start from
register transfer level specifications, TiDE accepts behavioral
specification using Haste and hence allows designers to expend
considerably less time and effort to make a circuit. However, a
drawback when using Haste is that designers are not free from
optimizing a circuit below the stage of the behavioral synthesis.
The designers can only participate in describing the circuit with
Haste, and it is very difficult to control the synthesis process at
a fine-grain level because constraints are made manually.
Nevertheless, TiDE is well known for being the most
successful asynchronous design flow among language-based
methods, owing to its ease of design and its stability for
implemented circuits.

TiDE synthesizes a high-level specification described by
Haste into an asynchronous gate-level netlist, as in [16], in
which a compiler translates high-level languages into Verilog
netlists. The base handshake protocol in TiDE is a four-phase

482 Myeong-Hoon Oh et al. ETRI Journal, Volume 35, Number 3, June 2013

Fig. 1. TiDE tool flow.

Haste
program

Verilog
netlist

Script &
constraint

Layout

TiDE

Conventional EDA tool

Behavioral
syntehsis

Scan-chain logic
optimization

Verilog
netlist

Verilog
netlist

P&R

Sign-off

bundled data assumption [17]. Figure 1 shows the design flow
of TiDE. First, TiDE initially converts a Haste description into
a corresponding Verilog netlist through a behavioral synthesis
process. After the behavioral synthesis, TiDE optimizes the
netlist by interacting with other conventional electronic design
automation (EDA) tools. It also creates scripts and constraints
to control the EDA tools to fabricate an ASIC from the netlist.

The behavioral synthesis process consists of generating
handshake circuits and mapping them to standard cells.
Handshake circuits are transformed from Haste descriptions
using a syntax-directed compiling method [18]. The method
converts every operator in a Haste specification into predefined
components one by one. In the mapping step, the handshake
circuits are synthesized into a netlist by mapping those
components to standard cells according to a target technology.
All components in TiDE are stored in a cell library DB
targeting a certain technology, and each component has its own
symbol, signal ordering, and schematic design. They are
mainly used in the synthesis of control circuits and support
various types of protocols based on a four-phase signaling.
Representative components include a sequencer, parallel
component, and repeater to respectively allow perpetual access
in turn, simultaneously, and repetitively. In addition, TiDE has
various components, such as a fork, join, merge, mux, and
demux [6].

Figure 2 shows an example of a Haste code, its handshake
circuit, and its implementation generated after synthesis. In the
specification, the inner part between “forever do” and “od”
iterates infinitely, and the operator “?” represents a channel
input from left to right. That is, the data from channel “b” is
stored into variable “x.” The operator “:=” represents a variable
assignment from right to left, that is, storing the result of the
functional circuit into variable “y.” This circuit consists of a
repeater, a sequencer, and variable components.

In Fig. 2, the gray box in the handshake circuit represents a
synthesis into the netlist shown in the blocks with the dotted
lines. The functional circuit component includes a delay
element to synchronize a data validation with an
acknowledgement (ACK) signal. In addition, a variable

Fig. 2. Example of Haste code, handshake circuit, and their
implementation.

*

;

? ? x y

Z

b c

Delay

Delay

Comb.
x

enable

y
forever do

b ?x
;y:=f(x)

od
d q

f(x)

component has a delay element to guarantee a hold time.

2. EISC Architecture

The EISC architecture processes 32-bit data with a native
16-bit instruction set. Because the EISC architecture utilizes
16-bit instructions, the density of the instruction code is quite
high. According to the research in [15], the code density of the
EISC architecture is 6.5% and 11.5% higher than that of the
ARM THUMB and MIPS16, respectively.

Generally, a 32-bit reduced instruction set computer (RISC)
processor using a 16-bit compressed instruction set requires a
mechanism to deal with 32-bit immediate data. This
occasionally causes inefficiency in making long-bit immediate
values with small-bit opcodes because several memory access
operations must be executed for a single operand of data. The
EISC architecture has a special instruction, that is, a load
extension register immediate (LERI), to minimize memory
access. The LERI instruction consists of a 2-bit opcode and
14-bit immediate value fields. A 32-bit immediate value is
composed of a maximum of three consecutive LERI
instructions. There is no need for additional operations to form
a 32-bit immediate value as in any other 32-bit processor with a
16-bit instruction set. This leads to 35.1% and 37.3%
reductions in the data memory access rate compared to the
ARM THUMB and MIPS16, respectively [15].

Another distinguishing feature of the EISC architecture with
a 32-bit data bus and 16-bit instruction set is that the instruction
fetch rate is twice that of the execution rate, on average, since
two instructions are fetched in a single clock cycle.

These two typical characteristics lead to the generation of
buffering instructions and immediate values before transferring
them to the decode stage. In a pipelined structure with the
EISC architecture, the instruction fetch stage can be decoupled
from the decoding stage with an instruction queue.

Finally, another characteristic of the EISC architecture is as
follows. The EISC architecture has 16 general-purpose
registers, nine special-purpose registers, and three stack

ETRI Journal, Volume 35, Number 3, June 2013 Myeong-Hoon Oh et al. 483

pointers [14]. Most of the instructions are of RISC style, but
some are of complex instruction set computer (CISC) style (for
example, PUSH and POP). Their processing in ALTHEA will
be presented later in this paper.

III. Basic Asynchronous Microarchitecture of ALTHEA
Processor

1. Pipeline Stages

A five-stage pipeline with six functional blocks is the basic
microarchitecture of ALTHEA, as shown in Fig. 3. The five
stages are the instruction fetch (IF), decode (DE), execution
(EX), memory (ME), and write back operations. Four of the
five stages in the pipeline steps are in accordance with four
functional blocks, and two additional blocks are a register file
(RF) and coprocessor (CP).

All communication between blocks, as well as data transfers
among subblocks in a functional block, is performed by an
asynchronous protocol based on a four-phase bundled data
assumption. Handshake channels separating each stage and
block are depicted as simple data signals in Fig. 3. However,
they accompany request (Sr, Rr) and ACK (Sa, Ra) signals of a
sender and a receiver to control data transfers during
implementation, as described in the lower section of Fig. 3.

Each functional block in the basic microarchitecture
generates a valid or dummy output to send to its receiving
blocks every cycle, regardless of the need for data transfers. By
marking and delivering a valid bit added to a corresponding
handshake channel, a sender indicates to the receiver whether
the current transferred data is effective or not. This concept is
similar to that of the data transfer between stages on a
synchronous pipeline and is used for the basic architecture to
ensure design ease.

The characteristics of the architectural viewpoint in the basic
microarchitecture of ALTHEA can be summarized as follows:

• typical RISC style five-stage pipeline;
• Harvard architecture;
• asynchronous communication among blocks;
• decoupled IF stage;
• register file access through handshake channels;
• data transfer with valid bits similar to a synchronous one.

2. Operation of Each Block

The IF block consists of three functional units and two
queues between them, the prefetcher and LERI folding unit
fetches instructions. If the fetched instruction is an LERI, it
collects consecutive LERI instructions to form a temporary
instruction and store the instruction into a fetch queue. The

Fig. 3. Basic asynchronous microarchitecture of ALTHEA.

Instr. queue

Prefetcher
/LERI folding

Branch
handler

Predecoder

Decoder

Operand
fetcher

Branch
resolution

 Handshake channels

Memory
access

Bypass

Functional unit

ALU Multiplier . . .

Status
register

Shifter

Data align Stack
pointer inc.

Port selector

IF

DE

EX

ME
CP

Channel implementation

C S R

Sr Rr

Sa Ra
data

RF

Fetch
queue

In
st

ru
ct

io
n

m

em
or

y
I/

F

D
at

a

m
em

or
y

I/
F

R
eg

is
te

r
ar

ra
y

L
oc

k
ar

ra
y

A
rb

it
ra

ti
on

C
P

de
co

de
r

C
P

re
gi

st
er

 f
il

e

W
ri

te
 b

ac
k

M
em

or
y

E

xc
ut

io
n

D

ec
od

e
In

st
ru

ct
io

n
fe

tc
h

predecoder unit then reads a temporary instruction from the
fetch queue, decodes it, generates a final instruction, and stores
the instruction in the instruction queue. When informed that the
instruction sent is a branch instruction or whether the IF block
should be halted, the branch handler unit deals with the branch
or the halting case.

The DE block performs three major functions: decoding the
instructions from the IF block, accessing the register file, and
preparing the operands. Each instruction from the IF block
contains additional predecoding information that indicates one
of 13 groups that the instruction belongs to. The DE block of
ALTHEA has 13 individual subdecoders that are in accordance
with each instruction group. Since a newly arrived instruction
is decoded in only one of the subdecoders, other subdecoders
are prohibited to operate. This reduces additional signal
transitions and dynamic power consumption.

After the decoding process, access to register files and a
generation of pipeline control commands are provided. The DE
block sends the address of the source registers and destination
lock information to the RF block. Finally, the operands and
control information that are required from the EX and the ME
block are generated.

The RF block has 16 general-purpose registers and nine

484 Myeong-Hoon Oh et al. ETRI Journal, Volume 35, Number 3, June 2013

special-purpose registers. Unlike the register file designed
using a synchronous method, there is no way to know when
the correct value is written back to the register in an
asynchronous register file. Note that the execution time of each
pipeline stage in ALTHEA varies according to the type of
instruction and whether there is data dependency. The RF
block in ALTHEA provides a special locking mechanism [19]
to prevent malfunctions in reading from and writing to the
same register. When the DE block tries to apply a read access
to a certain register, the operand fetch operation is postponed
until the corresponding lock bit of the register is set to a valid
state, meaning that the write access of the previous instruction
to the same register is complete. The RF block has multiple
read and write ports to access the registers simultaneously.
Contrary to the EISC architecture, the RF block is separated
from the DE block in ALTHEA to reduce the complexity of the
DE block.

Arithmetic operations with operands are done in the EX
block, which consists of several execution units, such as a
shifter, an ALU, and a multiplier. According to the control
signals from the DE block, only one execution unit is selected.
In the case of a MOVE instruction group, data is bypassed to
perform a simple register-to-register data transfer. Each
execution unit chooses its operands among four handshake
channels based on the valid bits located on the channels. Most
of the instructions employ one or two operand values, but the
STORE and MULTIPLY instruction groups take three and four
operand values, respectively. The four-bit status values that
reflect the final result of an execution are forwarded to the DE
block through a handshake channel to handle conditional
branches.

The ME block provides an interface with data memory to the
LOAD or STORE instruction groups. In addition, automatic
additive and subtractive calculations for a stack pointer, which
indicates the memory address of the PUSH/POP instruction
groups, are carried out in this block. Including a bypass route
from the EX block, three final results of the ME block are
conveyed to the RF block, accompanied by three individual
handshake channels with valid bits.

Finally, the CP block supports the instruction to control a
coprocessor and exchange state information. The CP block has
peculiar but simple register files and functional units.

3. Performance Analysis of Each Block

Figure 4 shows the normalized performance of each block
based on the standards of the best-case throughput in the CP
block when the basic microarchitecture is designed and
synthesized at the gate level. The performance of the CP block
in which relatively simple operations are executed is the

Fig. 4. Normalized performance of each block.

0.65

0.22

0.47 0.44

0.23

1.00

0.59

0.19

0.40 0.40

0.19

0.89

0.40

0.15

0.30 0.31

0.15

0.77

0

0.2

0.4

0.6

0.8

1.0

1.2

IF DE EX ME RF CP

Best Normal Worst

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Fig. 5. Power consumption of each block.

P
ow

er
 c

on
su

m
pt

io
n

(µ
W

)

0

200

400

600

800

1000

1200

IF DE EX ME RF CP

Leakage Switching

highest. The IF block also has a very short cycle time since the
inner operations of the predecoding or LERI folding and the
external channel output to the DE block run concurrently,
owing to a four-stage instruction queue. However, these two
blocks do not influence the performance improvement of the
entire system. The occurrence rate of instructions related to a
coprocessor is remarkably low, and the CP block does not
work in accordance with the main pipeline. Furthermore, the IF
block fetches instructions and stores them in the queue in
advance until the queue becomes full, regardless of the pipeline
states.

On the other hand, the result indicates that the DE and RF
blocks have low performances. Two major reasons for the
performance degradation in the RF block are the register
locking mechanism for resolving a data dependency and the
arbitration between the read and write operations that occurs at
a register file asynchronously. In the case of the DE block, the
complexity of decoding the EISC instructions, additional
channel communications for the register locking mechanism
with the RF block, and dealing with branch instructions are the
main reasons for the increased cycle time.

Clearly, the entire performance of the basic version of
ALTHEA is vulnerable to this unbalanced pipeline structure in
that the throughput of the pipeline totally depends on its
slowest stage. The dispersion of power consumption, which

ETRI Journal, Volume 35, Number 3, June 2013 Myeong-Hoon Oh et al. 485

consists of static and dynamic features in each block, is shown
in Fig. 5. The dissipated power of the IF block is the largest
among all blocks because it always works on fetching
instructions from memory, predecoding them, and managing
an instruction queue as long as the queue is not full. The RF
block, which most of the instructions access in reading the
operands and writing the resulting data, consumes a
considerable amount of power.

Comparing the DE block with the EX block, which
performs real arithmetic operations, the dynamic power of the
former is three times greater than the latter. It is inferred from
this observation that the internal functions of the DE block
must have a complicated design, making the occurrence of
redundant activities possible. The amount of leakage power in
each block is directly associated with its area. The EX block
has the largest area among all the blocks.

The lesson learned from two prior evaluations with each
block is to improve the DE and RF blocks so as to
preferentially balance all stages. The next section explains this
in detail.

IV. Enhanced Asynchronous Microarchitecture of
ALTHEA Processor

1. Considerations for Enhancement

In the case of the DE block, complex decoding circuitries
caused by an irregular opcode field of EISC ISA and intricate
control schemes used to process a CISC-style instruction (for
example, multi-operand PUSH/POP) are the major reasons for
a degraded performance. In addition, many arbitrations among
the read and write requests and the dependency resolution by
the register locking mechanism have a decisive effect on the
performance of the RF block. The complex structure also
hinders a further reduction of the power consumption in the DE
and RF blocks. In addition, channels unnecessarily
communicating among blocks can lead to an increase in
dynamic power. To raise the performance and reduce power
consumption, an enhanced microarchitecture is developed and
tested. Some major considerations for an enhanced version of
the ALTHEA microarchitecture are summarized as follows:

• addition of a pipeline stage between IF and DE blocks to
segment complex CISC instructions into simple multiple
RISC instructions;

• separation of the DE block into two pipeline stages;
• simplified arbitration scheme for read and write operations

in the RF block;
• on-demand handshake channels that only communicate

with each other when necessary.
A block diagram of the enhanced microarchitecture of

Fig. 6. Enhanced asynchronous microarchitecture of ALTHEA.

Instr.queue

Predecoder
Prefetcher

PC

LERI folder

Decoder

Register
request

Branch
resolution

 Handshake channels

Memory
access

Bypass

Functional unit

ALU Multiplier . . . Shifter

Data align Stack
pointer inc.

Port selector

IF

DE1

EX

ME

RF

CP

Channel implementation

C S R

Sr Rr

Sa Ra

Register
fetcher

DE2

Operand
generation

Status
register

data

CISC
check

CISC
segmentation

ID

In
st

ru
ct

io
n

m
em

or
y

I/
F

1s
t d

ec
od

e
2n

d
de

co
de

E
xe

cu
ti

on

M
em

or
y

W
ri

te
 b

ac
k

D
at

e
m

em
or

y
I/

F

IF
/D

E
 in

te
rp

ip
e

In
st

ru
ct

io
n

fe
tc

h

R
eg

is
te

r
L

oc
k

A
rb

R
eg

is
te

r
L

oc
k

A
rb

R
eg

is
te

r
L

oc
k

A
rb

C
P

de
co

de
r

C
P

re
gi

st
er

 f
il

e

ALTHEA is depicted in Fig. 6, and details of the enhancements
are explained in the following subsections.

2. CISC Instruction Segmentation

The EISC instruction set contains some CISC-style
instructions. These instructions require multicycle execution on
a single instruction; thus, they need a finite state machine
(FSM) to execute. In the basic microarchitecture, the FSM
slows down the speed of the decoder because of added
complexity in identifying CISC instructions and managing
state transitions. To improve the performance related to the
execution of CISC instructions, a dedicated pipeline stage,
namely an ID (IF/DE inter-pipe) block, is added between the
IF and DE blocks. The main purpose of the ID block is to
identify a CISC instruction and segment the instruction into
multiple single-RISC instructions with a single operand.

When the ID block receives a new instruction from the IF
block, the ID block identifies the CISC instruction first. If the

486 Myeong-Hoon Oh et al. ETRI Journal, Volume 35, Number 3, June 2013

Table 1. Example of CISC instruction segmentation.

Basic Microarchitecture Enhanced Microarchitecture

PUSH %R00, %R01, %R02

PUSH %R00 // First of push

PUSH %R01 // Middle of push

PUSH %R02 // End of push

POP %R02, %R01, %R00

POP %R00 // First of pop

POP %R01 // Middle of pop

POP %R02 // End of pop

instruction is a normal RISC instruction, then it is forwarded to
the next stage without any modifications. On the contrary, if the
instruction is of the PUSH/POP instruction group, the ID block
divides the instructions, as described in Table 1. Eliminating the
FSM for CISC instructions in the DE block of the enhanced
microarchitecture results in simple and fast operations for the
decoding instructions.

3. DE Block Partition

As stated in the previous section, in the basic
microarchitecture, three main functions (instruction decoding,
RF access, and operand and control generation) are performed
in the DE block. Among these major functions, the RF access
process is longest, followed by the operand and control
generation process. To improve the performance of the DE
block, we divide the block into two. One is the DE1 block,
which is used to decode instructions, request access to a
register file, and generate control signals. The other is the DE2
block, which is used to obtain data from the register file and
create operands. This separation can contribute to maintaining
better balance in the pipeline by reducing the difference
between stage latencies. Also, we can save additional time in
the channel communications when accessing the register file
by overlapping the processes of the RF block between the DE1
and DE2 blocks.

Figure 7 shows a comparison between the basic and
enhanced microarchitectures with an example of a typical
two-operand instruction. In this case, Inst0 is
“ADD %R01, %R00.” In the basic version, the three
processes consume 17.2%, 50.5%, and 32.3% of the total
execution time, respectively, and the execution time of Inst0
in the DE stage is about 62.7 ns, as shown in Fig. 7(a). On the
contrary, Fig. 7(b) shows that the latency for Inst0 in the DE1
stage is remarkably reduced to 13.9 ns in the enhanced
version, owing to a large decrease in the time for RF access.
Actually, the ratio of the time consumption for the RF request
becomes only 24.6%. See the ratio of time for RF access
(50.5%) in the basic version.

Fig. 7. Enhancement in DE block.

Inst0 Inst1

Inst0 EX stage

RF stage RF RF

DE stage

Inst0

RF

Inst1

RF

(a) DE in basic microarchitecture

DE1 send requst
DE2 receive data

62.7 ns for ADD instruction

13.9 ns for ADD instruction

Control generation &
delivery

EX stage

RF stage

Inst1

DE1 send
request &
receive data

17.2% 50.5% 32.3%

Inst.fetch &
decode

RF access
(request & data)

Operand/control
generation & delivery

DE1 stage

DE2 stage Inst0 Inst1

Inst0 Inst1

43.6% 24.6% 31.8%

Inst.fetch &
decode

RF access
(request only)

(b) DE1 and DE2 in enhanced microarchitecture

4. Structural Enhancement of RF Block

Because of its complexity in dealing with the generation of
multiple operands and the prevention of data hazards in the
pipeline, the register file is also one of the performance
bottlenecks in a basic microarchitecture. In EISC ISA, the
maximum required number of read operands is four in the case
of a multiply instruction. In a write back stage, two 32-bit write
data ports are required to store 64-bit multiplication data, and
one write data port indicates a stack point for the execution of
multi-operand PUSH/POP instructions.

In a basic microarchitecture, registers in the RF block are
designed in the form of a global register array using the Haste
keyword “ramreg array.” A conceptual block diagram
representing the keyword “ramreg array” is shown in Fig. 8(a).
The register array supports only one read operation or one
write operation at a given time. Therefore, all read access
operations and all write access operations should be serialized.
Indeed, arbitration circuits between read and write requests
cannot help being complex for correct operations since read
and write requests are generated regardless of the DE and ME
stages, respectively. Finally, if one of the read requests has an
unresolved data dependency, the rest of the requests to the RF
block are suspended until the data dependency is solved
because all requests are serialized.

To overcome these obstacles, we redesign the RF block in a
manner in which a single global array is changed into 25
individual 32-bit registers and lock registers, as shown in

ETRI Journal, Volume 35, Number 3, June 2013 Myeong-Hoon Oh et al. 487

Fig. 8. Enhancement in RF block.

Response channels

Write req. channels

(a) RF in basic microarchitecture

(b) RF in enhanced microarchitecture

R01_data

R00_data

R15_data

RSR_data

Read req. channel

Response channels

Write req. channel
Read req. channel

Lock

Lock

Lock

Lock

Lock

RF_data: ramreg array
[0..24] of U32

Haste code

Haste code

Haste code

RF_lock: ramreg array
[0..24] of U32

RD_Req_0
RD_Req_1
RD_Req_2
RD_Req_3

RD_Req_0
RD_Req_1
RD_Req_2

RD_Req_0
RD_Req_1
RD_Req_2
RD_Req_3

Lock_req

Haste code

R00_Data: var bit32
R01_Data: var bit32
…
R15_Data: var bit32
RSR_Data: var bit32
…
RER_Data: var bit32

R00_Lock: var bool
R01_Lock: var bool
…
R15_Lock: var bool
RSR_Lock: var bool
…
RER_Lock: var bool

ar
b.

ar

b.

ar
b.

ar

b.

ar
b.

WR_Req_0
WR_Req_1
WR_Req_2

DE1_RD_Req

RD_Resp_0
RD_Resp_1
RD_Resp_2
RD_Resp_3

R
eq

. d
is

tr
ib

ut
io

n

R
es

p.
 d

is
tr

ib
ut

io
n

RER_data

Arbitration

RF_data[0]

RF_data[1]

RF_data[23]

RF_data[24]

Lock[0]

Lock[1]

Lock[23]

Lock[24]

Fig. 8(b). By separating the registers, any register can be
independently and simultaneously accessed by read or write
requests as long as there is no data dependency. Performance
degradations owing to a pause in RF access, caused by
serializing requests, are soothed.

Another modification in the RF block is that all read requests
are merged into a single handshake channel. Separated
handshake channels in a basic microarchitecture cause a
sophisticated arbitration circuitry and slow down the access
time. By removing arbitrations for read requests and separating
the registers, the access time can be reduced.

5. On-Demand Channel

Data transfers between blocks through handshake channels
in a basic microarchitecture are done in such a way that a
receiver block unconditionally latches onto input data at every
handshake communication, whether it performs operations
with the data or not. The receiver block distinguishes the
effective input data using the value in the separate valid bit on
each handshake channel. Therefore, both the sender block and
the receiver block must perform meaningless channel
communications in cases of invalid transfers. This operation
has a baleful influence on both the performance and power
consumption of ALTHEA. In other words, by activating the
channels only when data transfers are required, we can reduce
unnecessary access and contribute to a faster and low-powered

Table 2. Example of channel description.

 Basic microarchitecture Enhanced microarchitecture

DE

or

DE2

If (Opa and Opb condition)

valida = 1 || validb = 1

 || validc = 0 || validd = 0

. . . .

; Opa ! {valida, opa_reg}

|| Opb ! {validb, opb_reg}

|| Opc ! {validc, 32’h00000000}

|| Opd ! {validd, 32’h00000000}

If (Opa and Opb condition)

Opa ! opa_reg

|| Opb ! opb_reg

EX

Opa_ex ? opa

|| Opb_ex ? opb

|| Opc_ex ? opc

|| Opd_ex ? Opd

;if (operanda and b is needed)

 if (Opa_ex[32]==1)

 operanda = Opa_ex[31:0]

|| if (Opb_ex[32]==1)

 operandb =Opb_ex[31:0]

If (operanda and b is needed)

 operanda ? Opa

|| operandb ? Opb

ALTHEA.

Table 2 explains this on-demand style of channel
communication as an example of data transfers between the
DE and EX blocks. For some input channels (Opa, Opb, Opc,
and Opd) of the EX block, Haste-based pseudocodes describe
the behaviors of the DE and EX blocks according to both
microarchitectures in executing an instruction using two
operands, operanda and operandb. In the DE block of a basic
microarchitecture, at the checking step of the output conditions
of both Opa and Opb, valid values of each channel (valida,
validb, validc, validd) are set to high or low. All channels
containing each valid bit are activated simultaneously and
latched onto an internal register (Opa_ex, Opb_ex, Opc_ex,
Opd_ex) in the EX block. Finally, it uses operand data values
(operanda, operandb) by checking the valid bits. However, in
the enhanced microarchitecture, only the required operands are
transferred without communication of Opc and Opd.

The on-demand-style channel is more favorable for fast and
low-powered communication between the DE and EX blocks.
In fact, all the instructions in ALTHEA except a multiply
instruction group use one or two operands, and it is thus highly
reasonable to prevent all channel communication from
occurring, especially Opc and Opd.

V. Design and Simulation

1. Design Flow and Simulation Environment

The left side of Fig. 9 illustrates the design flow of ALTHEA

488 Myeong-Hoon Oh et al. ETRI Journal, Volume 35, Number 3, June 2013

Fig. 9. Design, verification, and power estimation flow of
ALTHEA.

Benchmark
program xxx.c

Environment
xxx.c, xxx.s,

xxx.vct…

Output
xxx.elf, xxx.elf.dis, xxx.ROM

ALTHEA Haste
source

Halt level 0

Dynamic power estimation with
Synopsys Primetime-PX

include

Yes

Handshake circuit

Verilog netlist

Logic optimized
Verilog netlist

Haste constraint file
.tcl script

Verilog netlist

Optimized
Verilog netlist

htcomp

htmap

htlog

htpost

Synopsys DC

Synopsys DC Test environment
xxx.v No

Compilation with
EISC_studio

Tool Result

Value change
dump file
xxx.vcd

Gate level Verilog
simulation with

NC-Veirlog

Environment file
xxx.tcl

Design flow Verification flow

Power estimation flow

Delay information
xxx.sdf

httime
Synopsys PT

based on TiDE. The initial source codes described with Haste
are compiled into handshake circuits and converted to gate-
level netlists by htcomp and htmap commands, respectively. To
optimize the netlists, TiDE supports htlog and htpost
commands, which are used to generate partially compact
netlists in terms of area and several constraint files to operate
together with standard EDA tools. Finally, we obtain an
integrated netlist at a pre-layout level with Synopsys Design
Compiler. Also, standard delay format files are generated by an
httime command and Synopsys PrimeTime for a more realistic
timing simulation. The employed technology is a UMC
0.13-μm CMOS process.

The verification environment of ALTHEA at a pre-layout
level is shown on the right side of Fig. 9. Using a compiler of
the EISC architecture, we generate ROM codes of the
corresponding benchmark programs of MiBench [20] and
Dhrystone [21] suite and insert the binary codes into a Verilog
test code for instantiating the optimized Verilog netlist from the
TiDE tool flow. To confirm the functionality, we check the
level of HALT instruction at the timing simulation with a
Cadence NC-Verilog simulator after inserting test codes that
generate the zero halt level at the end of each benchmark
program. The bottom of Fig. 9 shows the flow used to estimate
dynamic power consumption at the gate level. We also verify
our designs on FPGA by using the verification flow that the
TiDE tool provides [6].

Fig. 10. Performance comparison using various benchmarks.

E
qu

iv
. c

lo
ck

 f
re

qu
en

cy
 (

M
H

z)

36.13

17.36

0

5

10

15

20

25

30

35

40

45

Qsort Stringsearch Bitcount Dijkstra Sha Dhrystone Average

Basic Enhanced

Fig. 11. Latency comparison of each block.

L
at

en
cy

 in
 b

es
t c

as
e

(n
s)

0

10

20

30

40

50

60

70

80

ID DE1 DE2 EX ME RF

Basic Enhanced

2. Simulation Results

To analyze the effect of architectural considerations in terms
of performance and power consumption, we measure the
quantitative results of the basic and the enhanced versions of
ALTHEA.

Figure 10 shows the equivalent clock frequencies of each
version in executing various benchmark programs based on the
standards of the maximum clock frequency of synchronous
AE32000.

In the enhanced version, a division of the DE block of the
basic version into three blocks (ID, DE1, DE2) and a
modification of the RF block clearly reduces the latencies of
the DE and RF blocks. Although two additional handshake
channels are added from the ID block to the DE2 block, this
improvement in the structural level leads to a 109%
performance increase on average compared with the basic
version. Actually, as in Fig. 11, which shows the latency in
each block of both versions, all blocks in the enhanced version
have a shorter time, and, in particular, the latency of the DE
block, which is a bottleneck in the performance, decreases
greatly.

The EX block has the largest latency (20 ns) in the enhanced
version, so the maximal throughput is around 50 MHz
(1/20 ns) by rule of thumb with an ideal assumption of a

ETRI Journal, Volume 35, Number 3, June 2013 Myeong-Hoon Oh et al. 489

Table 3. Power comparison.

Power consumption (mW)
Version

Best Normal Worst

Basic 16.5 7.9 3.9

Intermediate 6.9 3.5 1.9

Enhanced 11.6 5.9 3.0

pipeline structure. However, the average measured
performance, as shown in Fig. 10, is about 36 MHz, and the
difference between the maximal expectation and real
observation seems to be large. The major cause for this gap is
that the enhanced version resolves data dependency problems
by stalling the pipeline with the register locking mechanism.

Before making a power comparison between two versions of
ALTHEA, we measure the power consumption of the
“intermediate” version, which adopts only on-demand
channels and the ID stages to evaluate the power impact of the
architectural considerations described in section IV. Table 3
lists the power measurement for the three versions regarding
the three corner conditions. The reduction ratio of the power
consumption in the intermediate version compared with the
basic version is nearly 60%. Changing all handshake
communications into on-demand channels can significantly
save dissipated power during unnecessary data transfers
between blocks. Furthermore, the logics of the DE block are
simplified by removing operations related with the PUSH/POP
group, and non-PUSH/POP instructions can bypass the ID
stage.

The reason for a greater power consumption in the enhanced
version compared with the intermediate version is that the RF
block becomes more complex, and the switching activity of the
blocks and channels increase at the same rate as the
performance improvement. However, the enhanced version
still reduces 30% of the power consumption compared with the
basic version. Accordingly, it is found that the enhanced
version has the best power efficiency, and its value is calculated
at 238 µW/MHz for a normal case.

A commercialized synchronous AE32000 was fabricated
using 0.18-μm CMOS technology, and its maximum working
clock frequency is 140 MHz [15]. It was also reported that the
simulated power efficiency of the AE32000 core without a
cache is about 400 µW/MHz. Although a fair comparison is
impossible owing to the different technologies, it is probable
that the ALTHEA of the enhanced version is competitive with
its synchronous counterpart in terms of power efficiency. As for
the performance, we can apply a data forwarding mechanism
for solving data dependencies, as in normal synchronous

pipelined processors. Thus, we are expecting that ALTHEA’s
maximum equivalent clock frequency can reach or surpass that
of ARM966HS (77 MHz) [8], which is a 32-bit asynchronous
commercial ARM processor and was designed using the same
design flow of TiDE.

VI. Conclusion and Future Work

In this paper, we designed and verified a 32-bit clockless
processor core (ALTHEA) at a pre-layout level using an
asynchronous HDL and a top-down design and verification
flow.

Based on the basic microarchitecture, which consists of six
blocks for a five-stage pipeline, we tried to ascertain any
problems and suggested their solutions in terms of an
architectural view. Finally, we designed an enhanced version of
ALTHEA based on a seven-stage pipeline structure, after
applying several ideas.

Simulation results show that the performance and power
consumption of the enhanced version increases by 109% and
decreases by 30%, respectively. The measured power
efficiency of ALTHEA is about 238 μW/MHz, which is a
value competitive with that of a synchronous EISC processor.

For our future work, we will try to make pipeline stages
more harmonious to reduce the latency difference among all
stages and employ a simple forwarding scheme to resolve data
hazards efficiently. We will also consider applying a
bottom-up-based design methodology in which designers can
get involved in all of the design stages, unlike TiDE tool flow.

References

[1] C.H. Van Bekel et al., “Applications of Asynchronous Circuits,”

Proc. IEEE, vol. 87, no. 2, Feb. 1999, pp. 223-233.

[2] C.J. Myers, Asynchronous Circuit Design, NY: John Wiley &

Sons, Inc., July 2001.

[3] J. Kessels and R. Marston, “Designing Asynchronous Standby

Circuits for a Low-Power Pager,” Proc. IEEE, vol. 87, no. 2, Feb.

1999, pp. 257-267.

[4] B.Z. Tang et al., “A Low Power Asynchronous GPS Baseband

Processor,” Proc. IEEE 18th Int. Symp. Asynchronous Circuits

Syst., 2012, pp. 33-40.

[5] S. Bo et al., “Reducing Power Consumption of Floating-Point

Multiplier via Asynchronous Technique,” Proc. 4th Int. Conf.

Comput. Inf. Sci., Aug. 2012, pp. 1360-1363.

[6] Handshake Solutions, TiDE Manual, 2009

[7] Handshake Solutions, Haste Manual, 2009

[8] A. Bink and R. York, “ARM996HS: The First Licensable,

Clockless 32-Bit Processor Core,” IEEE Micro, vol. 27, no. 2,

2007, pp. 58-68.

490 Myeong-Hoon Oh et al. ETRI Journal, Volume 35, Number 3, June 2013

[9] A. Takamura et al., “TITAC-2: An Asynchronous 32-bit

Microprocessor Based on Scalable-Delay-Insensitive Model,”

Proc. IEEE Int. Conf. Computer Design, Oct. 1997, pp. 288-294.

[10] J. Garside et al., “AMULET3 Revealed,” Proc. IEEE Int. Symp.

Adv. Research Asynchronous Circuits Syst., Apr. 1999, pp. 51-59.

[11] A. Martin et al., “Three Generations of Asynchronous

Microprocessors,” IEEE Design Test Computers, Nov. 2003, pp.

9-17.

[12] M.-H. Oh and S. Kim, “Asynchronous 2-Phase Protocol Based on

Ternary Encoding for On-Chip Interconnect,” ETRI J., vol. 33,

no. 5, Oct. 2011, pp. 822-825.

[13] Semiconductor Industry Association, International Technology

Roadmap for Semiconductors, 2011.

[14] Advanced Digital Chips Inc., Instruction Set Reference Manual

for AE32000: a 32-bit EISC microprocessor, Nov. 2008.

[15] H. Lee, P. Beckett, and B. Appelbe, “High-Performance

Extendable Instruction Set Computing,” Proc. 6th ACSAC, Jan.

2001, pp. 89-94.

[16] G.N.T. Huong and S.W. Kim, “GCC2Verilog Compiler Toolset

for Complete Translation of C Programming Language into

Verilog HDL,” ETRI J., vol. 33, no. 5, Oct. 2011, pp. 731-740.

[17] S.B. Furber and P. Day, “Four-Phase Micropipeline Latch Control

Circuits,” IEEE Trans. Very Large Scale Integration Syst., vol. 4,

no. 2, June 1996, pp. 247-253.

[18] J. Sparsø and S. Furber, Principles of Asynchronous Circuit

Design — A Systems Perspective, Norwell, MA: Kluwer

Academic Publishers, 2001.

[19] N.C. Paver et al., “Register Locking in An Asynchronous

Microprocessor,” Proc. IEEE Int. Conf. Computer Design, Oct.

1992, pp. 351-355.

[20] M.R. Guthaus et al., “MiBench: A Free, Commercially

Representative Embedded Benchmark Suite,” IEEE Int.

Workshop Workload Characterization, Dec. 2001, pp. 3-14.

[21] R. Weicker, “Dhrystone: A Synthetic Systems Programming

Benchmark,” Commun. ACM, vol. 27, no. 10, Oct. 1984, pp.

1013-1030.

Myeong-Hoon Oh received his PhD in

information and communications engineering

from Gwangju Institute of Science and

Technology (GIST), Gwangju, Rep. of Korea,

in 2005. He has been with ETRI, Daejeon, Rep.

of Korea, since 2005 as a senior engineer. From

2006 to 2011, he was an associate professor at

the University of Science and Technology (UST), Daejeon, Rep. of

Korea. His current research focuses on digital circuit design, relevant

embedded systems, cloud computing hardware design, and cloud

computing standardization. He also has been an editor for developing

the Recommendation of Cloud Desktop as a Service in ITU-T SG13.

Young Woo Kim received his BS, MS, and

PhD in electronics engineering from Korea

University, Seoul, Rep. of Korea, in 1994, 1996,

and 2001, respectively. He was an associate

professor at the University of Science and

Technology, Daejeon, Rep. of Korea, during

2009 and 2010. In 2001, he joined ETRI,

Daejeon, Rep. of Korea. His recent research has focused on

asynchronous processors and computer system development. His

current research interests are high-speed networks and supercomputing

system architecture.

Sanghoon Kwak received his BS in computer

engineering from Dongguk University, Seoul,

Rep. of Korea, in 1998. He received his MS and

PhD in information and communications

engineering from GIST in 2000 and 2009,

respectively. He is working as a research

professor in the Department of Electronics

Engineering, Sogang University, Seoul, Rep. of Korea, since Oct. 2011.

His current research interests include network-on-chip synthesis in 3D

ICs and design methodology for GALS (globally asynchronous and

locally synchronous) systems.

Chi-Hoon Shin received his BS in computer

science from Ajou University, Rep. of Korea, in

2005, and MS and PhD in computer science

from the University of Science and Technology

(UST), Daejeon, Rep. of Korea, in 2007 and

2011, respectively. He joined ETRI, Daejeon,

Rep. of Korea, in 2011, where he is currently a

senior researcher. His major interests include computer architecture,

asynchronous circuits, sensor networks, and algorithms. He is a

member of IEICE and IEEE.

Sung-Nam Kim was born in Chungnam, Rep.

of Korea, in 1968. He received his BS, MS, and

PhD in electronics engineering from Korea

University, Seoul. Rep. of Korea, in 1991, 1993,

and 1998, respectively. In 1999, he joined ETRI,

Daejeon, Rep. of Korea, where he is currently a

principal researcher. His current research

interests include cloud computing hardware platform architecture,

high-speed interconnect technology, low-power digital circuit design,

and asynchronous circuit design technology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

