
ETRI Journal, Volume 35, Number 2, April 2013 © 2013 Jing-Zhe Xu et al. 301

Nowadays, the multicore processor is watched with
interest by people all over the world. As the design
technology of system on chip has developed, observing and
controlling the processor core’s internal state has not been
easy. Therefore, multicore processor debugging is very
difficult and time-consuming. Thus, we need a reliable and
efficient debugger to find the bugs. In this paper, we
propose an on-chip debug architecture for multicore
processors that is easily adaptable and flexible. It is based
on the JTAG standard and supports monitoring mode
debugging, which is different from run-stop mode
debugging. Compared with the debug architecture that
supports the run-stop mode debugging, the proposed
architecture is easily applied to a debugger and has the
advantage of having a desirable gate count and execution
cycle. To verify the on-chip debug architecture, it is applied
to the debugger of the prototype multicore processor and is
tested by interconnecting it with a software debugger based
on GDB and configured for the target processor.

Keywords: JTAG, on-chip debugger, on-chip debug
architecture, multicore processor debugging, monitoring
mode debugging.

Manuscript received July 18, 2012; revised Sept. 17, 2012; accepted Oct. 1, 2012.
This work was supported by the Pioneer R&D Program for converging technology through

the Korea Science and Engineering Foundation, funded by the Ministry of Education, Science
and Technology, Rep. of Korea (M10711270001-08M1127-00110, Development of
Displacement Sensing CMOS Circuit and Pattern Recognition System) and the Industrial
Strategic Technology Development Program funded by the Ministry of Knowledge Economy,
Rep. of Korea (No. 10039173, Development of System Semiconductor Technology for IT
Fusion Revolution).

Jing-Zhe Xu (phone: +82 51 510 1702, kchuh@pusan.ac.kr), Seungpyo Jung
(spyam@pusan.ac.kr), and Ju Sung Park (juspark@pusan.ac.kr) are with the Department of
Electronics and Electrical Engineering, Pusan National University, Busan, Rep. of Korea.

Hyeongbae Park (baeya.park@gmail.com) is with the Department of R&D HW3 Team,
Chips & Media Inc., Seoul, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.13.0112.0487

I. Introduction

Today, the multicore processor is more attractive than the
single-core processor and widely used in embedded systems.
However, there are many problems that need to be solved, such
as with interconnection, cache coherency, scheduling,
synchronization, the programming model, application, and so
on [1]-[3]. In addition to these problems, the debugging of a
multicore processor is also a challenging task.

Some bugs of a system on chip (SoC) or its application
programs appear only when executing the applications in real
cases. So, having a debug unit to support debug functions is
very necessary. Because of the dramatic increase in processor
performance and the intrinsic lack of observability and
controllability in multicore processors, an outside debug unit
can no longer provide efficient debug capabilities, for example,
in-circuit emulators or ROM monitors [4], [5]. In recent years,
most processors employ an on-chip debug method that embeds
a debug support logic into the target processor. The on-chip
debug logic embedded in a processor works by interconnecting
with a software debugger. It can allow the software developer
to directly control the processor operation and examine the
internal status, registers, and memories for debugging.

On-chip debug functionalities can be classified into three
types, based on the supported debug method. The first type
supports a run-stop method that stops the processor core on a
desired breakpoint to inspect the core’s state, for example,
ARM’s Embedded-ICE and MIPS’s Extended JTAG [6]-[9].
The second type uses a real-time trace method that stores the
debug data without halting the processor execution, for
example, ARM’s Embedded Trace Macrocell and MIPS’s
Program and Data Trace [10], [11]. The third type employs the
monitoring method, which suspends the processor core to enter

Easily Adaptable On-Chip Debug Architecture
for Multicore Processors

Jing-Zhe Xu, Hyeongbae Park, Seungpyo Jung, and Ju Sung Park

302 Jing-Zhe Xu et al. ETRI Journal, Volume 35, Number 2, April 2013

Fig. 1. MOCD architecture demonstrated by [14].

MDSU
(clock controller, cross breakpoint manager)

Core
0

EDU

Local
mem

Core
1

EDU
Core

2

EDU EDU

Shared bus

Shared
mem

Int
cont. Audio cont.

Video cont. etc
IPs.

JTAG

Target multicore processor embedding MOCD

TCK

TMS
TDI

TDO
nTRST
SEL

DMA

FI
FO

FI
FO

FI
FO

Core
3

Local
mem

Local
mem

Local
mem

ext_clk

an exception to save the state information, for example, ARM’s
Monitor debug mode debugging [12]. The real-time trace
method is a more powerful solution than the others, but it
might cause huge hardware overhead because of the large
memory for storing the debug information. Thus, the run-stop
mode and monitoring mode debugging are more useful and
flexible to implement.

Developing an on-chip-based processor debugger could be a
difficult and complicated job that requires considerable time
and effort. Therefore, easily adaptable and flexible on-chip
debug architecture is needed for small companies and
academic groups that develop their own customized processor
cores for general or specific purposes. So, in this study, we
propose an easily adaptable on-chip debug architecture for
multicore processors. It employs the monitoring mode
debugging method and is based on JTAG [13]. It supports
debug functions, including breakpoint/watchpoint, single-step,
register read/write, memory read/write, and debug/resume.
These functions enable us to inspect the status of the multicore
processor embedding the proposed debug architecture.

This paper is structured as follows. Section II reviews the
existing debug architecture for multicore processors. Section III
describes the proposed on-chip debug architecture for
multicore processors. Section IV reports the implementation
results, and conclusions are drawn in section V.

II. Related Work

In recent years, the smart devices are more popular for many
people and most of them employ the multicore processors.
Therefore, the task of debugging multicore processors plays an
important role in the development of application systems. In
several studies, researchers have proposed debug solutions for
multicore processors. In the following paragraphs, we will
review one of the solutions.

Figure 1 shows the on-chip debug architecture for the

Fig. 2. Verification environment for on-chip debug architecture.

Target processor chip
Application board

JTAG RSP
MEM

Eclipse
(GUI)

Source-level debugger
on host PC

Interface
HW/SW

GDBstub

Core

GDB
(configured
for target

processor)

Debug
support

unit

multicore processor proposed by [14]. Park and others [14]
demonstrated that they focused on designing a flexible and
scalable on-chip debug infrastructure that could provide the
run-stop mode debugging method to multicore processors.

The multicore on-chip debug (MOCD) architecture consists
of embedded debug unit (EDU) blocks, a multicore debug
support unit (MDSU) block, and a JTAG block. Among the
three, the EDU block is the most important block of the debug
architecture because it can be embedded into each processor
core and can be adapted to different multicore processors.

To adapt the MOCD to the other multicore processors, the
processor cores must be modified to connect to the EDU block.
If the cores are not the same, more work is required to adapt the
MOCD to the multicore processor, even if the modification is
minor. So, in this study, we propose an easily adaptable on-chip
debug architecture for multicore processors and will describe it
in section III.

To verify the proposed on-chip debug architecture, we
implement a verification environment. Figure 2 gives an
overview of the verification environment for the proposed
debug architecture. It is composed of the debug support unit,
the GDB, and the GDBstub. The debug support unit is the
debug logic that employs the proposed on-chip debug
architecture for multicore processors, the GDB is the source-
level software debugger configured for the target processor,
and the GDBstub is an interface hardware/software module
[15]-[22].

Eclipse C/C++ development technology is used as the GUI
tool for a software debugger. The GDBstub is the interface
module for connecting the GDB to the debug support unit
within the target through the GDB remote debug feature
known as the remote serial protocol and JTAG.

III. Proposed On-Chip Debug Architecture

The proposed debug architecture, that is, the easily adaptable
multicore on-chip debug (EA-MOCD), offers the processor
control and the internal state inspecting functions to debug the
multicore processor. The research is based on the MOCD, so
we reuse some blocks designed by [14] for the EA-MOCD

ETRI Journal, Volume 35, Number 2, April 2013 Jing-Zhe Xu et al. 303

Fig. 3. Block diagram of EA-MOCD architecture with multicore
processor.

.....

EA-
EDU

Processor
core 0

Interconnection

JTAG

MDSU
(CBM)

TCK

TMS
TDI

TDO
nTRST
SELEA-

EDU
EA-
EDU

Processor
core 1

Processor
core N

ext_clk

architecture, for example, the cross breakpoint manager
(CBM) block and the comparator block. In this section, we will
describe the structure and mechanism of the EA-MOCD. For
the reused blocks, we will only do a short review.

The EA-MOCD consists of a JTAG, a multicore debug
support unit (MDSU), and easily adaptable embedded debug
unit (EA-EDU) blocks. The block diagram of the EA-MOCD
is shown in Fig. 3 and is similar to that of the MOCD (see Fig.
1).

The JTAG block is used for debug interface and control. The
original JTAG is not suitable for a multicore processor, so we
modify the JTAG block to facilitate the debugging of the
multicore processor through a single JTAG interface. As shown
in Fig. 3, the EA-EDU blocks are connected with each
processor core through the coprocessor interface to support
debug functionalities. Multiple EA-EDU blocks can access
each processor core separately. When one of the processor
cores raises a breakpoint event, the other processor cores that
are executing relevant tasks must enter the exception for
debugging so that the possible debug point is not lost [23], [24].
For the concurrent debug operation, the EA-EDU blocks work
in conjunction with the MDSU that includes the CBM module.
A detailed view of each block is presented in the following
paragraphs.

1. Extended JTAG

SoC includes so many IPs that there are not enough pins
available for debugging. A JTAG (IEEE 1149.1 standard) uses
only five I/O pins to interface the software debugger and
hardware debugger. Therefore, we choose the JTAG protocol
for transferring data between the hardware debugger and
software debugger. The five JTAG ports support the debug
interface between the software debugger and the EA-MOCD.

For application to the multicore processor, as [14]
demonstrated, we extend the JTAG standard for our debug
architecture. Figure 4 shows the detailed view of the extended

Fig. 4. Block diagram of extended JTAG block.

TAP controller

JTAG selection
reg Decoder

TDI TCK TMS nTRST TDO SEL

TCK

TMS

TDI

TDO

Instruction reg

 ID reg

Bypass reg

Standard
JTAG

Extended
JTAG

Internal JTAG
ports of JTAG-
based IPs that
have built-in

debug functions

nTR
ST

nTRST_0

…

nTRST_N
TCK_0

…

TCK_N
TMS_0

…

TMS_N
TDI_0

…

TDI_N
TDO_0

…

TDO_N

JTAG block. It consists of one TAP controller, several registers
for special purposes, a decoder, and additional functional logic.
For the debugging of a multicore processor, we added several
user defined JTAG instructions without any additional bit
length of JTAG instruction register. While maintaining full
IEEE 1149.1 compliance, the extended JTAG block uses only
one TAP controller and JTAG connection to control and debug
all JTAG-based IPs integrated in the multicore processor
embedding the EA-MOCD.

The EA-MOCD supports the monitoring mode debugging
instead of the MOCD’s run-stop-type described by [14], and it
does not use the inserting instruction method. So the scan
chains of the EDU blocks are not necessary in our proposed
debug architecture. Therefore, the gate count of the extended
JTAG block in the EA-MOCD architecture is much less than it
is in the MOCD.

2. MDSU

The MDSU, consisting only of the CBM module, is
designed to allow embedded processor cores to be debugged
concurrently, as reflected in the name “CBM.” Even though
the MDSU block only includes the CBM module, the reason
why we use “MDSU” as the block name is that the study is
based on the MOCD.

In a multicore processor system, the individual processor
cores execute relevant multiple tasks in a parallel manner,
while interacting with each other using task scheduling,
synchronization, and communication via the interconnect
method. So, while debugging one processor core, it is very
important to control the rest of the processor cores to prevent
commonly-encountered errors. Therefore, to effectively debug
such multicore processor systems, cross breakpoint
mechanisms are needed [25]-[28].

Figure 5 shows the relationship between the MDSU block
and the neighboring blocks. The operation of the MDSU block

304 Jing-Zhe Xu et al. ETRI Journal, Volume 35, Number 2, April 2013

Fig. 5. Block diagram of MDSU.

Extended
JTAG

Comparator of
EA-EDUs

MDSU

mask_reg0[1]

Stop_mode_
reg0[2]

Stop_mode_
reg0[N]

Int_bkpt_en1

Int_bkpt_en2

Int_bkpt_enN

…

mask_reg0[2]

mask_reg0[N]

…

CBM

ext_bkpt_enN

ext_bkpt_en1

…

ext_bkpt_en0

Core
0~N

TAP
signals

Stop_mode_
reg0[1]

is controlled by the extended JTAG block. The CBM module
utilizes a number of the int_bkpt_en signals connected with the
EA-EDU blocks and ext_bkpt_en signals connected with
multiple processor cores, as shown in Fig. 5.

The int_bkpt_en signals generated by comparators of the
EA-EDU blocks mean breakpoints have occurred. The
ext_bkpt_en signals are used to force each processor core to
enter the exception for debugging. The signals are determined
by the combination of the int_bkpt_en signals and the internal
configuration registers (stop mode value register and stop
mode mask register), as shown in Fig. 5.

The MDSU does not include the clock controller module
introduced by [14] because the EA-MOCD uses the
monitoring mode debugging instead of the run-stop mode.
Thus, even though there are two clock sources (system clock,
JTAG tck clock), the EA-MOCD uses the individual clock
domains that are different from the complex clock domains of
the MOCD. Therefore, the proposed debug architecture is
more reliable and robust than the MOCD in timing sensitivity.
It is also easy to do the clock tree synthesis in the procedures of
making silicon chips.

3. EA-EDU

The EA-EDU block is the most important block of the EA-
MOCD because it plays a vital role in monitoring the processor
core and transferring data (debug information and commands)
between the core and software debugger through the JTAG
protocol. Multiple EA-EDU blocks are connected to each
processor core to support the debug capabilities in the
multicore processor.

Figure 6 shows a block diagram of an EA-EDU block and its
connection with the other blocks, such as the processor core,
extended JTAG block, and the MDSU block. It consists of the
comparator module and coprocessor for debug (CFD) module.
The comparator module is designed to program and detect the
breakpoint occurrence. The CFD module is a coprocessor used
for transferring debug commands and information between the

Fig. 6. Block diagram of EA-EDU.

Bus I/F

Processor core

TAP
signals

Memory bus
access

Coprocessor
access Extended

JTAG

MDSU
(CBM)

Comparator

Coprocessor
I/F CFD

Breakpoint
register set

EA-EDU

Int_bkpt
en0~N

processor core and software debugger.

In part A of subsection III, we will briefly introduce the
comparator module, studied by the researchers in [14]. In part
B of subsection III.3, we will concretely describe the CFD,
which is the key of the monitoring mode debugging method.

A. Comparator

As shown in Fig. 6, the comparator module includes the
breakpoint register set and a comparator element. We can
program one or two desired breakpoints in the breakpoint
register set via the JTAG protocol for debugging. The
comparator element is used for detecting the breakpoint
occurrence by comparing the memory access signals of the
processor core and the programmed breakpoint. When
detecting a breakpoint occurrence, the comparator block
activates the int_bkpt_en signal, which is connected with the
MDSU block. In a multicore processor, multiple comparator
modules generate some int_bkpt_en signals and the MDSU
(CBM) block manages the input signals and generates the
ext_bkpt_en signals (see Fig. 5).

B.CFD

The proposed debug architecture supports the debug
functionalities using the monitoring mode debugging method.
The processor core enters an exception for debugging when the
ext_bkpt_en signal from the MDSU is enabled. So, the core
has two operation modes, namely, the system mode and
monitoring mode. The system mode is the normal operation
mode of the core. The monitoring mode represents the
exception for debugging. When an ext_bkpt_en signal is
enabled, the core enters the monitoring mode, and we can
execute the debug functions in this mode. The monitoring
mode debugging method forces the processor cores to enter an
exception for debugging the core and does not halt the target.
Thus, the processor core is always operated by the system
clock.

The CFD module is a coprocessor that can be connected

ETRI Journal, Volume 35, Number 2, April 2013 Jing-Zhe Xu et al. 305

Fig. 7. MMCR bit pattern.

D.
ACK Register number

10 9 6

EN

11 5 4 3

PS

2
SS &
END

1
D.

EXP

0
C.

ACKR/W R/M

Table 1. MMCR bit functions.

Bits Field Function

[11] EN Specifies whether EA-MOCD is enabled
(EN=1) or disabled (EN=0)

[10] Debug
acknowledge

Specifies whether processor core can
access registers of CFD
-D.ACK=1 for enabling access
-D.ACK=0 for disabling access

[9:6] Register number Specifies number of desired registers for
reading or writing

[5] Read/write Specifies whether it is read operation
(R/W=0) or write operation (R/W=1)

[4] Register/memory Specifies whether it is operation for
register (R/M=0) or memory (R/M=1)

[3] Process status Specifies whether it is operation for
process status (PS=1) or not (PS=0)

[2] Single-step & end
Specifies whether it is operation for
single-step and debug end (SS&END=1)
or not (SS&END=0)

[1] Debug exception
Specifies whether processor core is in
debug exception (D.EXP=1) or not
(D.EXP=0)

[0] Core
acknowledge

Specifies whether software debugger
can access registers of CFD
-C.ACK=1 for enabling access
-C.ACK=0 for disabling access

with each processor core to support the monitoring mode
debugging on a multicore processor. It contains the coprocessor
interface part and several registers for transferring debug
information between the software debugger and the processor
cores.

The CFD module is connected to the processor core via the
coprocessor interface. Therefore, to adapt the EA-MOCD
architecture to a multicore processor, it is necessary that the
processor cores support the coprocessor interface. It is one of
the restrictions for the EA-MOCD architecture. However, in
our opinion, the addition of the coprocessor interface is
considered to be acceptable for implementing a debug system
of a multicore processor because it is an easy interface for
processor design and most of the processors provide the
coprocessor interface.

Figure 7 and Table 1 show the detailed information about the
monitoring mode control register (MMCR). We can access the
MMCR through the JTAG protocol and do the monitoring
mode debugging by programming the MMCR according to
the control mechanism as shown in Fig. 8. The processes of the

debug functions are executed by transferring debug
information through several registers (address register, read
data register, and write data register of coprocessor) in the CFD.

According to the control mechanism, the EA-MOCD
architecture supports the debug functions
(breakpoint/watchpoint, single-step, register read/write,
memory read/write, and debug/resume) via the CFD module.
The operations of the debug functions are executed by the
following four steps.

First, we program a desired breakpoint in the breakpoint
register set in the comparator unit. That way, the comparator
will activate the int_bkpt_en signal as 1 when it detects a
breakpoint occurrence.

Second, the MDSU block receives the int_bkpt_en signal
from the EA-EDU block and generates the ext_bkpt_en (see
Fig. 5) signals for the processor cores. Then, it forces the
processor cores to enter an exception for the monitoring mode
debugging.

Third, during the monitoring mode, we can debug the target
through the software debugger by executing the service routine
of the exception for the monitoring mode. The service routine
includes 49 core instructions and offers several operations
(register read/write, memory read/write, process status
read/write, single-step, and monitoring mode exit) according to
the MMCR and control mechanism of the monitoring mode
debugging.

Fourth, after finishing the debugging, the processor cores
leave the exception and return to the system mode and the
cores resume their previous states.

Due to the third step, it is necessary to involve the exception
service routine (49 core instructions) in the instruction stream
of the user for monitoring mode debugging. This is the other
restriction for the EA-MOCD architecture. However, it is also
an advantage for debugging because we can modify the
exception service routine and the GDBstub software interface
module (see Fig. 2) to generate new debug functions for the
monitoring mode debugging without any hardware
modification.

IV. Implementation Results

We apply our approach for the implementation of the
debugger to a prototype multicore processor that contains four
identical 32-bit RISC-type processor cores (core0 through
core3). The processor cores are similar to the MIPS family of
processors. They have a five-stage pipeline and use the Havard
architecture.

Each processor core basically supports the coprocessor
interface and memory interface as shown in Fig. 9. The signals
for the coprocessor interface are prefixed with “COP_.” The

306 Jing-Zhe Xu et al. ETRI Journal, Volume 35, Number 2, April 2013

Fig. 8. Control mechanism of monitoring mode debugging.

Start

Polling others
11

MM entry
Polling D.S

0

1

R W

Write COP ADDR
(address)

Polling

Read COP RDATA
(value)

Write COP status
(0xC10)

Polling

Write COP WDATA
(value)

Exception

Y

N

N
R W

Polling

Polling

Read COP
RDATA(value)

Write COP status
(0xC10|(index<<6))

Polling

Write COP
WDATA (value)

Y

PS func.
R W

Polling

Polling

Read COP RDATA
(value)

Write COP status
(0xC08)

Polling

Write COP status
(0xC28)

Write COP WDATA
(value)

PS R/W Y

N

Polling

Polling D.S

Read COP
RDATA (RA)

Write COp status
(0xC04)

Y

Set BP for SS

0

MM func.

Polling

N

Polling D.S

Polling D.S

Read COP RDATA
(RA)

MM entry

Set BP for anypoint

Polling

1

0

0

1

Polling

Polling D.S

End

1
0

Write COP status
(0xCO4)

Exit from
monitoring mode

Y

N

Y BP program

N
Write BP register set

Write COP status
(0xC10|(index<<6))

Write 0x800 into status Reg. for
enabling monitoring-mode (MM)

Read status Reg. [D.EXP]
Check the value if it 1 or 0
0: exit
1: repeat

Read status Reg. [D.EXP&C.ACK
Check the value if

it is 11 or else
11: exit

others: repeat

Mem. Func.

Reg. func. Reg. R/W

Sigle-step SS func.

BP func.

Mem. R/W

Polling

Write COP ADDR
(address)

Write COP status
(0xC10)

1

ETRI Journal, Volume 35, Number 2, April 2013 Jing-Zhe Xu et al. 307

Fig. 9. Single core embedding EA-MOCD.

Extended
JTAG

TCK

nTRST

TDI
TMS
TDO

Register file

Comparator

CFD

Single
core

SEL

TAP
signals

EA-MOCD

MDSU

EA-EDU

int_bkpt_en

I_REQ
1_ADDR
I_DATA
D_REQ
D_nRW

D_ADDR
D_RDATA
D_WDATA

Exception_ack

COP_REQ
COP_TYPE
COP_NUMB
COP_RDATA
COP_WDATA

D
eb

ug
 I/

F

B
P

re
gi

st
er

 se
t

C
O

P
I/F

memory access signals use “I_” and “D_” as prefixes for
instruction memory and data memory, respectively. The
Exception_ack signal specifies whether the processor core
enters a debug exception (Exception_ack=1) or not.

Figure 9 shows the detailed connections that allow the EA-
MOCD to adapt to a single core. The EA-MOCD consists of a
JTAG block, an MDSU block, and an EA-EDU block. But the
MDSU (marked by dotted line in Fig. 9) is not necessary for
adapting the EA-MOCD to a single core because there is only
one core and we do not need to manage the breakpoints. So,
unlike the int_bkpt_en0~N signals of the EA-MOCD for a
multicore processor (see Fig. 5 and Fig. 6), the int_bkpt_en
signal is connected directly to the processor core. Thus, we can
easily adapt the EA-MOCD to a processor core if it supports
the coprocessor interface and memory interface.

Figure 10 shows a detailed view of the multicore processor
embedding the EA-MOCD. The EA-EDU blocks are
connected with the MDSU block and extended JTAG block.
The JTAG block controls the MDSU block and EA-EDU
blocks to process the debug functions by a single TAP. The
EA-EDU blocks monitor the state of instruction and data buses
and detect the desired breakpoint occurrence. The MDSU
block receives the int_bkpt_en0~3 signals from each EA-EDU
block and generates the ext_bkpt_en0~3 signals for core 0 to
core 3. Furthermore, the whole EA-MOCD block is connected
with the multicore processor by the coprocessor interface and
memory interface.

Figure 11 shows the overall verification environment for the
EA-MOCD as introduced in section II. We conduct a two-
stage verification procedures: functional level simulation by a
simulator and FPGA prototyping level verification. Functional
level simulation is time-consuming but enables us to apply

Fig. 10. Multicore processor embedding EA-MOCD.

MDSU
(CBM)

Core0

Local
mem

Core1 Core2 Core3

Shared bus

Shared
mem Audio cont.

Video cont. etc
IPs. DMA

TCK

TMS
TDI

TDO
nTRST

SELEA-
EDU

EA-
EDU

EA-
EDU

EA-
EDU

FI
FO

FI
FO

FI
FO

Local
mem

Local
mem

Local
mem

Int.
cont.

ext_clk

Ex
te

nd
ed

JT

A
G

Fig. 11. Overall verification environment for EA-MOCD.

HDL simulator

RSP

GUI (Eclipse)

Application board

USB
JTAG PORT

JTAG

FPGA

JTAG
(socket)

Synthesis &
Download

GDBstub

RTL processor

JTAG
PLI
func.

Waveform view
Source-level software

debugger

GDB
0~3

GDB
stubsw

tb_top_cores
top_cores

EA-MOCD

Core 0~3

various desired methods and algorithms in the verification
process. FPGA verification tests the applications in real-time,
so it can verify the timing sensitivity and exception cases.

As shown in Fig. 11, the RTL multicore processor model
(top_cores) could be connected with four GDB source-level
software debuggers that are configured for the target processor
cores via the GDBstub software interface module and JTAG
programming language interface (PLI) functions of the test-
bench module (tb_top_cores). Thus, the method makes it
possible to debug the multicore processor embedding the EA-
MOCD block running on the simulator at the source level
through the GDB along with its powerful software debug
functions, instead of the complicated simulation waveform
view. The solution provides a more efficient environment for
simulation. Due to the functional level of simulation, we prove
not only the EA-MOCD’s debug functionalities but its
reliability. However, functional level simulation does not
consider the gate delay, exceptions, and real time, so we
conduct the FPGA prototyping level verification later.

We execute the synthesis and P&R procedures for the design
(top_cores) and implement the design in the FPGA on the
application board connected with a software debugger through

308 Jing-Zhe Xu et al. ETRI Journal, Volume 35, Number 2, April 2013

Table 2. Comparison result of gate count.

Area (# of 2-input NAND gates)

For 1 core For 4 cores Functional blocks

MOCD
EA-

MOCD MOCD
EA-

MOCD
TAP 2,323 2,323 2,323 2,323

JTAG
Scan chain 6,355 None 25,420 None

Clock
controller 14 None 64 None

MDSU
CBM 0 0 553 553

Comparator 13,127 13,127 52,508 52,508

SMC 268 None 1,072 None
EDU /

EA-EDU
CFD None 863 None 3,452

Total 22,087
16,313

(↓21.6%)
81,940

58,836
(↓28.2%)

Table 3. Comparison result of execution cycles for debug
functions.

Execution cycles (# of TCK cycles)
Debug functions

MOCD EA-MOCD

Read 2,122 2,168 (↑2.2%) 16 register
values Write 2,563 2,411 (↓5.9%)

Read 3,839 3,912 (↑1.9%) 16 memory
values Write 4,618 4,133(↓10.4%)

Single-step 13,606 7,598 (↓44.2%)

the GDBstub hardware/software interface modules. To verify
the EA-MOCD block, we test all the debug functions at the
desired breakpoint, such as breakpoint programming and
detection, debug/resume, single-step, register read/write,
memory read/write, and variable read/write.

Table 2 shows the comparison result of the gate count
between the proposed EA-MOCD and the MOCD introduced
by [14]. We perform the synthesis procedure using a
commercial 90-nm CMOS cell library. The gate count of the
EA-MOCD is less than that of the MOCD at about 21.6% and
28.2% for a single-core processor and a four-core processor,
respectively.

The comparison result of the execution cycles for several
debug functions is shown in Table 3. For example, the single-
step debug function is executed by the following sequence:
programming the breakpoint for single-step, restoring the
previous register values, exiting to system mode from debug
mode, re-entering debug mode, and saving current register
values. For each executing cycle of the breakpoint
programming, debug mode entering and exiting is similar

between the EA-MOCD and the MOCD. In the procedures of
restoring and saving the register values, the MOCD uses the
inserting instruction method synchronized by 32 cycles of the
JTAG tck clock and the EA-MOCD employs the exception
method synchronized by one cycle system clock. The period of
the JTAG tck clock is much longer than that of the system
clock. So, for the single-step debug function, the EA-MOCD
architecture requires less execution cycles than the MOCD
does, at about 44.2%. Table 3 indicates that the EA-MOCD
method is better than the MOCD regarding debug speed.

The EA-MOCD architecture has the following two
restrictions. First, the processor cores must provide a
coprocessor interface for connecting with the EA-MOCD.
Second, the user must embed 49 instructions for the debug
service routine into the user’s instruction stream. In this aspect,
the EA-MOCD has disadvantages. However, it is still superior
to the MOCD regarding gate count and execution cycles.

To adapt the MOCD to a new multicore processor, we must
modify the processor cores slightly, as demonstrated by [14]. It
is also necessary to modify the GDBstub software interface
module because the MOCD uses the inserting instruction
scheme for debugging while other processor cores use a
different instruction set. Therefore, regarding adapting the
debug architecture to different multicore processors, the EA-
MOCD is definitely superior to the MOCD because the EA-
MOCD does not require any modification whereas the MOCD
requires some modification of the processor cores and software
debugger.

The proposed EA-MOCD architecture is considered
significantly more powerful than the MOCD in terms of
supporting the same debug functionalities.

V. Conclusion

This paper presented our proposed on-chip debug
architecture for multicore processors. It supports monitoring
mode debugging and such debug functions as
breakpoint/watchpoint, single-step, register read/write, memory
read/write, and debug/resume.

The EA-MOCD architecture consists of a JTAG block, an
MDSU block, and multiple EA-EDU blocks. The JTAG block
is extended for multicore processor debugging and it controls
the rest of the debug units (MDSU and EA-EDU) to execute
the debug functions. The MDSU block works in conjunction
with the multiple EA-EDU blocks and JTAG block. It supports
synchronous and concurrent debugging among the processor
cores. The EA-EDU blocks are the debug support unit that can
be connected with each processor core by a coprocessor
interface and bus interface supported by the core. There is not a
modification job for connecting the EA-EDU blocks to

ETRI Journal, Volume 35, Number 2, April 2013 Jing-Zhe Xu et al. 309

processor cores. So, the EA-MOCD architecture can be easily
adapted to different multicore processors that support the
coprocessor interface without any change of the processor
cores and the software debugger.

To verify the proposed debug architecture, we applied the
EA-MOCD architecture to a prototype multicore processor
system and implemented an overall verification environment
including a GDB-based software debugger, a GDBstub, and an
EA-MOCD block. We verified the reliability of the EA-
MOCD at an RTL simulation level and FPGA prototyping
level.

The proposed EA-MOCD architecture has two restrictions,
which were discussed in section IV. However, the EA-MOCD
architecture has the advantage of having a desirable gate count
and execution cycle for processing the debug functions. It also
can offer developers significant help in adopting it as a debug
solution for multicore processors.

References

[1] W. Wolf, A. Jerraya, and G. Martin, “Multiprocessor System-on-
Chip (MPSoC) Technology,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 27, no. 10, Oct. 2008, pp. 1701-1713.

[2] T. Dorta et al., “Overview of FPGA-Based Multiprocessor
Systems,” Int. Conf. Reconfigurable Comput. FPGAs, 2009, pp.
273-278.

[3] G. Martin, “Overview of the MPSoC Design Challenge,” 43rd
ACM/IEEE Design Autom. Conf., 2006, pp. 274-279.

[4] Y. Zorian, E.J. Marinissen, and S. Dey, “Testing Embedded-Core-
Based System Chips,” Computer, vol. 32, no. 6, June 1999, pp.
52-60.

[5] A.B.T. Hopkins and K.D. McDonald-Maier, “Debug Support
Strategy for Systems-on-Chips with Multiple Processor Cores,”
IEEE Trans. Comput., vol. 55, no. 2, Feb. 2006, pp. 174-184.

[6] ARM Ltd. Embedded-ICE Block Specification. Available:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0180a/DDI0
180.pdf

[7] MIPS Technologies Inc. EJTAG Trace Control Block Specification.
Available: http://www.mips.com/securedownload/ index.dot?product
_name=/auth/MD00148%2D2B%2DETCB%2DSPC%2D01.04.pdf

[8] JTAGPPC Controller. Available: http://www.xilinx.com/products/
intellectual-property/jtagppc_cntlr.htm

[9] L. Lian et al., “Design and Implementation of A Debugging
System for OpenRISC Processor,” 2nd ASID Conf., Aug. 2008,
pp. 368-371.

[10] ARM Ltd. ETM (Embedded Trace Marcocell) Block
Specification. Available: http://www.arm.com

[11] PDtraceTM Interface Specification, MD00136, May 14, 2003.
Available: http://www.mips.com

[12] ARM Ltd. Monitor Debug-Mode Block Specification. http://www.

arm.com
[13] IEEE Std. 1149.1a-1993, “Test Access Port and Boundary-Scan

Architecture,” Piscataway, NJ: IEEE, 1993.
[14] H. Park et al, “On-Chip Debug Architecture for Multicore

Processor,” ETRI J., vol. 34, no. 1, Feb. 2012, pp. 44-54.
[15] R. Stallman, R. Pesch, and S. Shebs, “GDB User Manual:

Debugging With GDB (The GNU Source-Level Debugger),”
Free Software Foundation.

[16] B. Gatliff, “Embedding with GNU: The GDB Remote Serial
Protocol,” Red Hat Developer Network (RHDN), 1999.

[17] M. Tan, A Minimal GDB Stub for Embedded Remote Debugging,
2002. Available: http://www1.cs.columbia.edu/~sedwards/
classes/2002/w4995-02/tan-final.pdf

[18] S. Shebs, GDB: An Open Source Debugger for Embedded
Development, Red Hat, 2000.

[19] Robert Pizzi, “GNU GDB Internal Architecture,” 1993.
[20] J. Gilmore and S. Shebs, GDB Internals, Cygnus Solutions, 2004.

Available: www.gnuarm.com/pdf/gdbint.pdf
[21] J. Bennett “Howto: Porting the GNU Debugger: Practical

Experience with the OpenRISC 1000 Architecture,” Nov. 2008.
Available: http://www.embecosm.com/download/ean3.html

[22] Open On-Chip Debugger. Available: http://openocd.berlios.
de/web/

[23] CoreSight On-Chip Trace and Debug Specification. Available:
http://www. arm.com

[24] B. Vermeulen and S. Bakker, ‘‘Debug Architecture for the En-II
System Chip,’’ IET Comput. Digit. Techn., vol. 1, no. 6, Nov.
2007, pp. 678-684.

[25] N. Stollon et al., “Multi-core Embedded Debug for Structured
ASIC Systems,” Proc. Design Con, 2004.

[26] R. Leatherman and N. Stollon, “An Embedded Debugging
Architecture for SoCs,” IEEE Potentials, vol. 24, no. 1, 2005, pp.
12-16.

[27] S. Tang and Q. Xu, “A Debug Probe for Concurrently Debugging
Multiple Embedded Cores and Inter-core Transactions in NoC
Based Systems,” Proc. Asia South Pacific Design Autom. Conf.,
Seoul, Rep. of Korea, 2008, pp. 416-421.

[28] L. Fiorin, G. Palermo, and C. Silvano., “MPSoCs Run-Time
Monitoring through Networks-on-Chip,” Proc. Conf. Design,
Automation Test Europe, 2009, pp. 558-561.

310 Jing-Zhe Xu et al. ETRI Journal, Volume 35, Number 2, April 2013

Jing-Zhe Xu received his BS in electronic
communication engineering from Yanbian
University of Science and Technology, Yanji,
Jilin, China, and his MS in electronics
engineering from Pusan National University,
Busan, Rep. of Korea, in 2005 and 2008,
respectively. He is currently working toward his

PhD in electronics engineering at Pusan National University. His
research interests include microprocessor design, multicore platform
implementation, and on-chip debug architecture.

Hyeongbae Park received his BS in
telecommunication engineering from Dongseo
University, Busan, Rep. of Korea, in 2004 and
his MS and PhD in electrical engineering from
Pusan National University, Busan, Rep. of
Korea, in 2006 and 2012, respectively. He is
currently in the R&D HW3 team at Chip &

Media Inc., Seoul, Rep. of Korea. His research interests include
application-specific processor design, multicore architecture processor
design for multimedia application, and on-chip debug architecture.

Seungpyo Jung received his BS and MS in
electronics engineering from Pusan National
University, Busan, Rep. of Korea, in 2007 and
2009, respectively. He is currently working
toward his PhD in electronics engineering at
Pusan National University. His research
interests include microprocessor design and

multimedia platform implementation.

Ju Sung Park received his BS in electronics
engineering from Pusan National University,
Busan, Rep. of Korea, in 1976, his MS in
electrical engineering from KAIST, Seoul, Rep.
of Korea, in 1978, and his PhD in electrical
engineering from the University of Florida,
Gainsville, FL, USA, in 1989. From 1978 to

1991, he was with ETRI, Daejeon, Rep. of Korea, where he worked as
a principal research engineer and as the manager and director of the IC
Design Group. While at ETRI, he designed several bipolar analog ICs
and was in charge of developing VCR ICs, CMOS 8-bit
microprocessors, and telecommunication chips. In 1991, he joined the
Electronics Department, Pusan National University, where he is now a
professor of electronics engineering. His current research interests are
microprocessor and DSP core design, platform design and application,
and multimedia algorithm implementation by hardware and software
co-design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K 0
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

