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Nowadays, the multicore processor is watched with 
interest by people all over the world. As the design 
technology of system on chip has developed, observing and 
controlling the processor core’s internal state has not been 
easy. Therefore, multicore processor debugging is very 
difficult and time-consuming. Thus, we need a reliable and 
efficient debugger to find the bugs. In this paper, we 
propose an on-chip debug architecture for multicore 
processors that is easily adaptable and flexible. It is based 
on the JTAG standard and supports monitoring mode 
debugging, which is different from run-stop mode 
debugging. Compared with the debug architecture that 
supports the run-stop mode debugging, the proposed 
architecture is easily applied to a debugger and has the 
advantage of having a desirable gate count and execution 
cycle. To verify the on-chip debug architecture, it is applied 
to the debugger of the prototype multicore processor and is 
tested by interconnecting it with a software debugger based 
on GDB and configured for the target processor. 
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I. Introduction 

Today, the multicore processor is more attractive than the 
single-core processor and widely used in embedded systems. 
However, there are many problems that need to be solved, such 
as with interconnection, cache coherency, scheduling, 
synchronization, the programming model, application, and so 
on [1]-[3]. In addition to these problems, the debugging of a 
multicore processor is also a challenging task.  

Some bugs of a system on chip (SoC) or its application 
programs appear only when executing the applications in real 
cases. So, having a debug unit to support debug functions is 
very necessary. Because of the dramatic increase in processor 
performance and the intrinsic lack of observability and 
controllability in multicore processors, an outside debug unit 
can no longer provide efficient debug capabilities, for example, 
in-circuit emulators or ROM monitors [4], [5]. In recent years, 
most processors employ an on-chip debug method that embeds 
a debug support logic into the target processor. The on-chip 
debug logic embedded in a processor works by interconnecting 
with a software debugger. It can allow the software developer 
to directly control the processor operation and examine the 
internal status, registers, and memories for debugging.  

On-chip debug functionalities can be classified into three 
types, based on the supported debug method. The first type 
supports a run-stop method that stops the processor core on a 
desired breakpoint to inspect the core’s state, for example, 
ARM’s Embedded-ICE and MIPS’s Extended JTAG [6]-[9]. 
The second type uses a real-time trace method that stores the 
debug data without halting the processor execution, for 
example, ARM’s Embedded Trace Macrocell and MIPS’s 
Program and Data Trace [10], [11]. The third type employs the 
monitoring method, which suspends the processor core to enter  
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Fig. 1. MOCD architecture demonstrated by [14]. 
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an exception to save the state information, for example, ARM’s 
Monitor debug mode debugging [12]. The real-time trace 
method is a more powerful solution than the others, but it 
might cause huge hardware overhead because of the large 
memory for storing the debug information. Thus, the run-stop 
mode and monitoring mode debugging are more useful and 
flexible to implement.  

Developing an on-chip-based processor debugger could be a 
difficult and complicated job that requires considerable time 
and effort. Therefore, easily adaptable and flexible on-chip 
debug architecture is needed for small companies and 
academic groups that develop their own customized processor 
cores for general or specific purposes. So, in this study, we 
propose an easily adaptable on-chip debug architecture for 
multicore processors. It employs the monitoring mode 
debugging method and is based on JTAG [13]. It supports 
debug functions, including breakpoint/watchpoint, single-step, 
register read/write, memory read/write, and debug/resume. 
These functions enable us to inspect the status of the multicore 
processor embedding the proposed debug architecture.  

This paper is structured as follows. Section II reviews the 
existing debug architecture for multicore processors. Section III 
describes the proposed on-chip debug architecture for 
multicore processors. Section IV reports the implementation 
results, and conclusions are drawn in section V.  

II. Related Work 

In recent years, the smart devices are more popular for many 
people and most of them employ the multicore processors. 
Therefore, the task of debugging multicore processors plays an 
important role in the development of application systems. In 
several studies, researchers have proposed debug solutions for 
multicore processors. In the following paragraphs, we will 
review one of the solutions.  

Figure 1 shows the on-chip debug architecture for the 

 

Fig. 2. Verification environment for on-chip debug architecture.
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multicore processor proposed by [14]. Park and others [14] 
demonstrated that they focused on designing a flexible and 
scalable on-chip debug infrastructure that could provide the 
run-stop mode debugging method to multicore processors.  

The multicore on-chip debug (MOCD) architecture consists 
of embedded debug unit (EDU) blocks, a multicore debug 
support unit (MDSU) block, and a JTAG block. Among the 
three, the EDU block is the most important block of the debug 
architecture because it can be embedded into each processor 
core and can be adapted to different multicore processors.  

To adapt the MOCD to the other multicore processors, the 
processor cores must be modified to connect to the EDU block. 
If the cores are not the same, more work is required to adapt the 
MOCD to the multicore processor, even if the modification is 
minor. So, in this study, we propose an easily adaptable on-chip 
debug architecture for multicore processors and will describe it 
in section III.  

To verify the proposed on-chip debug architecture, we 
implement a verification environment. Figure 2 gives an 
overview of the verification environment for the proposed 
debug architecture. It is composed of the debug support unit, 
the GDB, and the GDBstub. The debug support unit is the 
debug logic that employs the proposed on-chip debug 
architecture for multicore processors, the GDB is the source-
level software debugger configured for the target processor, 
and the GDBstub is an interface hardware/software module 
[15]-[22]. 

Eclipse C/C++ development technology is used as the GUI 
tool for a software debugger. The GDBstub is the interface 
module for connecting the GDB to the debug support unit 
within the target through the GDB remote debug feature 
known as the remote serial protocol and JTAG. 

III. Proposed On-Chip Debug Architecture  

The proposed debug architecture, that is, the easily adaptable 
multicore on-chip debug (EA-MOCD), offers the processor 
control and the internal state inspecting functions to debug the 
multicore processor. The research is based on the MOCD, so 
we reuse some blocks designed by [14] for the EA-MOCD 
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Fig. 3. Block diagram of EA-MOCD architecture with multicore
processor. 
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architecture, for example, the cross breakpoint manager 
(CBM) block and the comparator block. In this section, we will 
describe the structure and mechanism of the EA-MOCD. For 
the reused blocks, we will only do a short review.  

The EA-MOCD consists of a JTAG, a multicore debug 
support unit (MDSU), and easily adaptable embedded debug 
unit (EA-EDU) blocks. The block diagram of the EA-MOCD 
is shown in Fig. 3 and is similar to that of the MOCD (see Fig. 
1).  

The JTAG block is used for debug interface and control. The 
original JTAG is not suitable for a multicore processor, so we 
modify the JTAG block to facilitate the debugging of the 
multicore processor through a single JTAG interface. As shown 
in Fig. 3, the EA-EDU blocks are connected with each 
processor core through the coprocessor interface to support 
debug functionalities. Multiple EA-EDU blocks can access 
each processor core separately. When one of the processor 
cores raises a breakpoint event, the other processor cores that 
are executing relevant tasks must enter the exception for 
debugging so that the possible debug point is not lost [23], [24]. 
For the concurrent debug operation, the EA-EDU blocks work 
in conjunction with the MDSU that includes the CBM module. 
A detailed view of each block is presented in the following 
paragraphs.  

1. Extended JTAG 

SoC includes so many IPs that there are not enough pins 
available for debugging. A JTAG (IEEE 1149.1 standard) uses 
only five I/O pins to interface the software debugger and 
hardware debugger. Therefore, we choose the JTAG protocol 
for transferring data between the hardware debugger and 
software debugger. The five JTAG ports support the debug 
interface between the software debugger and the EA-MOCD.  

For application to the multicore processor, as [14] 
demonstrated, we extend the JTAG standard for our debug 
architecture. Figure 4 shows the detailed view of the extended 

 

Fig. 4. Block diagram of extended JTAG block. 
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JTAG block. It consists of one TAP controller, several registers 
for special purposes, a decoder, and additional functional logic. 
For the debugging of a multicore processor, we added several 
user defined JTAG instructions without any additional bit 
length of JTAG instruction register. While maintaining full 
IEEE 1149.1 compliance, the extended JTAG block uses only 
one TAP controller and JTAG connection to control and debug 
all JTAG-based IPs integrated in the multicore processor 
embedding the EA-MOCD.  

The EA-MOCD supports the monitoring mode debugging 
instead of the MOCD’s run-stop-type described by [14], and it 
does not use the inserting instruction method. So the scan 
chains of the EDU blocks are not necessary in our proposed 
debug architecture. Therefore, the gate count of the extended 
JTAG block in the EA-MOCD architecture is much less than it 
is in the MOCD.  

2. MDSU 

The MDSU, consisting only of the CBM module, is 
designed to allow embedded processor cores to be debugged 
concurrently, as reflected in the name “CBM.” Even though 
the MDSU block only includes the CBM module, the reason 
why we use “MDSU” as the block name is that the study is 
based on the MOCD.  

In a multicore processor system, the individual processor 
cores execute relevant multiple tasks in a parallel manner, 
while interacting with each other using task scheduling, 
synchronization, and communication via the interconnect 
method. So, while debugging one processor core, it is very 
important to control the rest of the processor cores to prevent 
commonly-encountered errors. Therefore, to effectively debug 
such multicore processor systems, cross breakpoint 
mechanisms are needed [25]-[28].  

Figure 5 shows the relationship between the MDSU block 
and the neighboring blocks. The operation of the MDSU block 
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Fig. 5. Block diagram of MDSU. 
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is controlled by the extended JTAG block. The CBM module 
utilizes a number of the int_bkpt_en signals connected with the 
EA-EDU blocks and ext_bkpt_en signals connected with 
multiple processor cores, as shown in Fig. 5.  

The int_bkpt_en signals generated by comparators of the 
EA-EDU blocks mean breakpoints have occurred. The 
ext_bkpt_en signals are used to force each processor core to 
enter the exception for debugging. The signals are determined 
by the combination of the int_bkpt_en signals and the internal 
configuration registers (stop mode value register and stop 
mode mask register), as shown in Fig. 5. 

The MDSU does not include the clock controller module 
introduced by [14] because the EA-MOCD uses the 
monitoring mode debugging instead of the run-stop mode. 
Thus, even though there are two clock sources (system clock, 
JTAG tck clock), the EA-MOCD uses the individual clock 
domains that are different from the complex clock domains of 
the MOCD. Therefore, the proposed debug architecture is 
more reliable and robust than the MOCD in timing sensitivity. 
It is also easy to do the clock tree synthesis in the procedures of 
making silicon chips.  

3. EA-EDU 

The EA-EDU block is the most important block of the EA-
MOCD because it plays a vital role in monitoring the processor 
core and transferring data (debug information and commands) 
between the core and software debugger through the JTAG 
protocol. Multiple EA-EDU blocks are connected to each 
processor core to support the debug capabilities in the 
multicore processor.  

Figure 6 shows a block diagram of an EA-EDU block and its 
connection with the other blocks, such as the processor core, 
extended JTAG block, and the MDSU block. It consists of the 
comparator module and coprocessor for debug (CFD) module. 
The comparator module is designed to program and detect the 
breakpoint occurrence. The CFD module is a coprocessor used 
for transferring debug commands and information between the 

 

Fig. 6. Block diagram of EA-EDU. 
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processor core and software debugger.  

In part A of subsection III, we will briefly introduce the 
comparator module, studied by the researchers in [14]. In part 
B of subsection III.3, we will concretely describe the CFD, 
which is the key of the monitoring mode debugging method.  

A. Comparator 

As shown in Fig. 6, the comparator module includes the 
breakpoint register set and a comparator element. We can 
program one or two desired breakpoints in the breakpoint 
register set via the JTAG protocol for debugging. The 
comparator element is used for detecting the breakpoint 
occurrence by comparing the memory access signals of the 
processor core and the programmed breakpoint. When 
detecting a breakpoint occurrence, the comparator block 
activates the int_bkpt_en signal, which is connected with the 
MDSU block. In a multicore processor, multiple comparator 
modules generate some int_bkpt_en signals and the MDSU 
(CBM) block manages the input signals and generates the 
ext_bkpt_en signals (see Fig. 5).  

B.CFD 

The proposed debug architecture supports the debug 
functionalities using the monitoring mode debugging method. 
The processor core enters an exception for debugging when the 
ext_bkpt_en signal from the MDSU is enabled. So, the core 
has two operation modes, namely, the system mode and 
monitoring mode. The system mode is the normal operation 
mode of the core. The monitoring mode represents the 
exception for debugging. When an ext_bkpt_en signal is 
enabled, the core enters the monitoring mode, and we can 
execute the debug functions in this mode. The monitoring 
mode debugging method forces the processor cores to enter an 
exception for debugging the core and does not halt the target. 
Thus, the processor core is always operated by the system 
clock.  

The CFD module is a coprocessor that can be connected 
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Fig. 7. MMCR bit pattern. 
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Table 1. MMCR bit functions. 

Bits Field Function 

[11] EN Specifies whether EA-MOCD is enabled 
(EN=1) or disabled (EN=0) 

[10] Debug 
acknowledge 

Specifies whether processor core can
access registers of CFD  
-D.ACK=1 for enabling access 
-D.ACK=0 for disabling access 

[9:6] Register number Specifies number of desired registers for 
reading or writing  

[5] Read/write Specifies whether it is read operation 
(R/W=0) or write operation (R/W=1)  

[4] Register/memory Specifies whether it is operation for 
register (R/M=0) or memory (R/M=1)  

[3] Process status Specifies whether it is operation for 
process status (PS=1) or not (PS=0)  

[2] Single-step & end 
Specifies whether it is operation for 
single-step and debug end (SS&END=1) 
or not (SS&END=0)  

[1] Debug exception 
Specifies whether processor core is in 
debug exception (D.EXP=1) or not 
(D.EXP=0)  

[0] Core 
acknowledge 

Specifies whether software debugger 
can access registers of CFD  
-C.ACK=1 for enabling access 
-C.ACK=0 for disabling access  

 

with each processor core to support the monitoring mode 
debugging on a multicore processor. It contains the coprocessor 
interface part and several registers for transferring debug 
information between the software debugger and the processor 
cores.  

The CFD module is connected to the processor core via the 
coprocessor interface. Therefore, to adapt the EA-MOCD 
architecture to a multicore processor, it is necessary that the 
processor cores support the coprocessor interface. It is one of 
the restrictions for the EA-MOCD architecture. However, in 
our opinion, the addition of the coprocessor interface is 
considered to be acceptable for implementing a debug system 
of a multicore processor because it is an easy interface for 
processor design and most of the processors provide the 
coprocessor interface.  

Figure 7 and Table 1 show the detailed information about the 
monitoring mode control register (MMCR). We can access the 
MMCR through the JTAG protocol and do the monitoring  
mode debugging by programming the MMCR according to 
the control mechanism as shown in Fig. 8. The processes of the 

debug functions are executed by transferring debug 
information through several registers (address register, read 
data register, and write data register of coprocessor) in the CFD.  

According to the control mechanism, the EA-MOCD 
architecture supports the debug functions 
(breakpoint/watchpoint, single-step, register read/write, 
memory read/write, and debug/resume) via the CFD module. 
The operations of the debug functions are executed by the 
following four steps.  

First, we program a desired breakpoint in the breakpoint 
register set in the comparator unit. That way, the comparator 
will activate the int_bkpt_en signal as 1 when it detects a 
breakpoint occurrence.  

Second, the MDSU block receives the int_bkpt_en signal 
from the EA-EDU block and generates the ext_bkpt_en (see 
Fig. 5) signals for the processor cores. Then, it forces the 
processor cores to enter an exception for the monitoring mode 
debugging. 

Third, during the monitoring mode, we can debug the target 
through the software debugger by executing the service routine 
of the exception for the monitoring mode. The service routine 
includes 49 core instructions and offers several operations 
(register read/write, memory read/write, process status 
read/write, single-step, and monitoring mode exit) according to 
the MMCR and control mechanism of the monitoring mode 
debugging.  

Fourth, after finishing the debugging, the processor cores 
leave the exception and return to the system mode and the 
cores resume their previous states. 

Due to the third step, it is necessary to involve the exception 
service routine (49 core instructions) in the instruction stream 
of the user for monitoring mode debugging. This is the other 
restriction for the EA-MOCD architecture. However, it is also 
an advantage for debugging because we can modify the 
exception service routine and the GDBstub software interface 
module (see Fig. 2) to generate new debug functions for the 
monitoring mode debugging without any hardware 
modification.  

IV. Implementation Results 

We apply our approach for the implementation of the 
debugger to a prototype multicore processor that contains four 
identical 32-bit RISC-type processor cores (core0 through 
core3). The processor cores are similar to the MIPS family of 
processors. They have a five-stage pipeline and use the Havard 
architecture.  

Each processor core basically supports the coprocessor 
interface and memory interface as shown in Fig. 9. The signals 
for the coprocessor interface are prefixed with “COP_.” The 
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Fig. 8. Control mechanism of monitoring mode debugging. 
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Fig. 9. Single core embedding EA-MOCD. 
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memory access signals use “I_” and “D_” as prefixes for 
instruction memory and data memory, respectively. The 
Exception_ack signal specifies whether the processor core 
enters a debug exception (Exception_ack=1) or not.  

Figure 9 shows the detailed connections that allow the EA-
MOCD to adapt to a single core. The EA-MOCD consists of a 
JTAG block, an MDSU block, and an EA-EDU block. But the 
MDSU (marked by dotted line in Fig. 9) is not necessary for 
adapting the EA-MOCD to a single core because there is only 
one core and we do not need to manage the breakpoints. So, 
unlike the int_bkpt_en0~N signals of the EA-MOCD for a 
multicore processor (see Fig. 5 and Fig. 6), the int_bkpt_en 
signal is connected directly to the processor core. Thus, we can 
easily adapt the EA-MOCD to a processor core if it supports 
the coprocessor interface and memory interface.  

Figure 10 shows a detailed view of the multicore processor 
embedding the EA-MOCD. The EA-EDU blocks are 
connected with the MDSU block and extended JTAG block. 
The JTAG block controls the MDSU block and EA-EDU 
blocks to process the debug functions by a single TAP. The 
EA-EDU blocks monitor the state of instruction and data buses 
and detect the desired breakpoint occurrence. The MDSU 
block receives the int_bkpt_en0~3 signals from each EA-EDU 
block and generates the ext_bkpt_en0~3 signals for core 0 to 
core 3. Furthermore, the whole EA-MOCD block is connected 
with the multicore processor by the coprocessor interface and 
memory interface.  

Figure 11 shows the overall verification environment for the 
EA-MOCD as introduced in section II. We conduct a two-
stage verification procedures: functional level simulation by a 
simulator and FPGA prototyping level verification. Functional 
level simulation is time-consuming but enables us to apply  

 

Fig. 10. Multicore processor embedding EA-MOCD. 
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Fig. 11. Overall verification environment for EA-MOCD. 
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various desired methods and algorithms in the verification 
process. FPGA verification tests the applications in real-time, 
so it can verify the timing sensitivity and exception cases.  

As shown in Fig. 11, the RTL multicore processor model 
(top_cores) could be connected with four GDB source-level 
software debuggers that are configured for the target processor 
cores via the GDBstub software interface module and JTAG 
programming language interface (PLI) functions of the test-
bench module (tb_top_cores). Thus, the method makes it 
possible to debug the multicore processor embedding the EA-
MOCD block running on the simulator at the source level 
through the GDB along with its powerful software debug 
functions, instead of the complicated simulation waveform 
view. The solution provides a more efficient environment for 
simulation. Due to the functional level of simulation, we prove 
not only the EA-MOCD’s debug functionalities but its 
reliability. However, functional level simulation does not 
consider the gate delay, exceptions, and real time, so we 
conduct the FPGA prototyping level verification later.  

We execute the synthesis and P&R procedures for the design 
(top_cores) and implement the design in the FPGA on the 
application board connected with a software debugger through 
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Table 2. Comparison result of gate count. 

Area (# of 2-input NAND gates) 

For 1 core For 4 cores Functional blocks 

MOCD 
EA-

MOCD MOCD 
EA-

MOCD 
TAP 2,323 2,323 2,323 2,323 

JTAG 
Scan chain 6,355 None 25,420 None 

Clock 
controller 14 None 64 None 

MDSU 
CBM 0 0 553 553 

Comparator 13,127 13,127 52,508 52,508 

SMC 268 None 1,072 None 
EDU / 

EA-EDU 
CFD None 863 None 3,452 

Total 22,087 
16,313 

(↓21.6%) 
81,940 

58,836 
(↓28.2%)

Table 3. Comparison result of execution cycles for debug
functions. 

Execution cycles (# of TCK cycles) 
Debug functions 

MOCD EA-MOCD 

Read 2,122 2,168 (↑2.2%) 16 register 
values Write 2,563 2,411 (↓5.9%) 

Read 3,839 3,912 (↑1.9%) 16 memory 
values Write 4,618 4,133(↓10.4%) 

Single-step 13,606 7,598 (↓44.2%) 
 

the GDBstub hardware/software interface modules. To verify 
the EA-MOCD block, we test all the debug functions at the 
desired breakpoint, such as breakpoint programming and 
detection, debug/resume, single-step, register read/write, 
memory read/write, and variable read/write.  

Table 2 shows the comparison result of the gate count 
between the proposed EA-MOCD and the MOCD introduced 
by [14]. We perform the synthesis procedure using a 
commercial 90-nm CMOS cell library. The gate count of the 
EA-MOCD is less than that of the MOCD at about 21.6% and 
28.2% for a single-core processor and a four-core processor, 
respectively.  

The comparison result of the execution cycles for several 
debug functions is shown in Table 3. For example, the single-
step debug function is executed by the following sequence: 
programming the breakpoint for single-step, restoring the 
previous register values, exiting to system mode from debug 
mode, re-entering debug mode, and saving current register 
values. For each executing cycle of the breakpoint 
programming, debug mode entering and exiting is similar 

between the EA-MOCD and the MOCD. In the procedures of 
restoring and saving the register values, the MOCD uses the 
inserting instruction method synchronized by 32 cycles of the 
JTAG tck clock and the EA-MOCD employs the exception 
method synchronized by one cycle system clock. The period of 
the JTAG tck clock is much longer than that of the system 
clock. So, for the single-step debug function, the EA-MOCD 
architecture requires less execution cycles than the MOCD 
does, at about 44.2%. Table 3 indicates that the EA-MOCD 
method is better than the MOCD regarding debug speed.  

The EA-MOCD architecture has the following two 
restrictions. First, the processor cores must provide a 
coprocessor interface for connecting with the EA-MOCD. 
Second, the user must embed 49 instructions for the debug 
service routine into the user’s instruction stream. In this aspect, 
the EA-MOCD has disadvantages. However, it is still superior 
to the MOCD regarding gate count and execution cycles.  

To adapt the MOCD to a new multicore processor, we must 
modify the processor cores slightly, as demonstrated by [14]. It 
is also necessary to modify the GDBstub software interface 
module because the MOCD uses the inserting instruction 
scheme for debugging while other processor cores use a 
different instruction set. Therefore, regarding adapting the 
debug architecture to different multicore processors, the EA-
MOCD is definitely superior to the MOCD because the EA-
MOCD does not require any modification whereas the MOCD 
requires some modification of the processor cores and software 
debugger.  

The proposed EA-MOCD architecture is considered 
significantly more powerful than the MOCD in terms of 
supporting the same debug functionalities.  

V. Conclusion 

This paper presented our proposed on-chip debug 
architecture for multicore processors. It supports monitoring 
mode debugging and such debug functions as 
breakpoint/watchpoint, single-step, register read/write, memory 
read/write, and debug/resume.  

The EA-MOCD architecture consists of a JTAG block, an 
MDSU block, and multiple EA-EDU blocks. The JTAG block 
is extended for multicore processor debugging and it controls 
the rest of the debug units (MDSU and EA-EDU) to execute 
the debug functions. The MDSU block works in conjunction 
with the multiple EA-EDU blocks and JTAG block. It supports 
synchronous and concurrent debugging among the processor 
cores. The EA-EDU blocks are the debug support unit that can 
be connected with each processor core by a coprocessor 
interface and bus interface supported by the core. There is not a 
modification job for connecting the EA-EDU blocks to 
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processor cores. So, the EA-MOCD architecture can be easily 
adapted to different multicore processors that support the 
coprocessor interface without any change of the processor 
cores and the software debugger.  

To verify the proposed debug architecture, we applied the 
EA-MOCD architecture to a prototype multicore processor 
system and implemented an overall verification environment 
including a GDB-based software debugger, a GDBstub, and an 
EA-MOCD block. We verified the reliability of the EA-
MOCD at an RTL simulation level and FPGA prototyping 
level.  

The proposed EA-MOCD architecture has two restrictions, 
which were discussed in section IV. However, the EA-MOCD 
architecture has the advantage of having a desirable gate count 
and execution cycle for processing the debug functions. It also 
can offer developers significant help in adopting it as a debug 
solution for multicore processors.  
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