References
- D.L. Donoho, "Compressed Sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, 2006, pp. 1289-1306. https://doi.org/10.1109/TIT.2006.871582
- M. Lustig, D. Donoho, and J.M. Pauly, "Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging," Magn. Resonance Medicine, vol. 58, no. 6, 2007, pp. 1182-1195. https://doi.org/10.1002/mrm.21391
- J. Bobin, J.L. Starck, and R. Ottensamer, "Compressed Sensing in Astronomy," IEEE J. Sel. Topics Signal Process., vol. 2, no. 5, 2008, pp. 718-726. https://doi.org/10.1109/JSTSP.2008.2005337
- M.A. Herman and T. Strohmer, "High-Resolution Radar via Compressed Sensing," IEEE Trans. Signal Process., vol. 57, no. 6, 2009, pp. 2275-2284. https://doi.org/10.1109/TSP.2009.2014277
- C.R. Berger et al., "Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From Subspace Methods to Compressed Sensing," IEEE Trans. Signal Process., vol. 58, no. 3, 2010, pp. 1708-1721. https://doi.org/10.1109/TSP.2009.2038424
- J. Ma, "Single-Pixel Remote Sensing," IEEE Geosci. Remote Sensing Lett., vol. 6, no. 2, 2009, pp. 199-203. https://doi.org/10.1109/LGRS.2008.2010959
- E. Candès, J. Romberg, and T. Tao, "Stable Signal Recovery from Incomplete and Inaccurate Measurements," Commun. Pure Appl. Mathematics, vol. 59, no. 8, 2006, pp. 1207-1223. https://doi.org/10.1002/cpa.20124
- S.S. Chen, D.L. Donoho, and M.A. Saunders, "Atomic Decomposition by Basis Pursuit," SIAM J. Sci. Computing, vol. 20, no. 1, 1999, pp. 33-61.
- E. Candès and T. Tao, "Decoding by Linear Programming," IEEE Trans. Inf. Theory, vol. 51, no. 12, 2005, pp. 4203-4215. https://doi.org/10.1109/TIT.2005.858979
- E. Candès, "The Restricted Isometry Property and Its Implications for Compressed Sensing," Comptes Rendus Mathematique, vol. 346, no. 9-10, 2008, pp. 589-592. https://doi.org/10.1016/j.crma.2008.03.014
- J. Tropp and A.C. Gilbert, "Signal Recovery from Random Measurements via Orthogonal Matching Pursuit," IEEE Trans. Inf. Theory, vol. 53, no. 12, 2007, pp. 4655-4666. https://doi.org/10.1109/TIT.2007.909108
- S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge: Cambridge University Press, 2004.
- E. Candès and T. Tao, "Near Optimal Signal Recovery from Random Projections: Universal Encoding Strategies?" IEEE Trans. Inf. Theory, vol. 52, no. 12, 2006, pp. 5406-5425. https://doi.org/10.1109/TIT.2006.885507
- R. Baraniuk et al., "A Simple Proof of the Restricted Isometry Property for Random Matrices," Constructive Approximation, vol. 28, no. 3, 2008, pp. 253-263. https://doi.org/10.1007/s00365-007-9003-x
- J. Tropp et al., "Beyond Nyquist: Effcient Sampling of Sparse, Bandlimited Signals," IEEE Trans. Inf. Theory, vol. 56, no. 1, 2010, pp. 520-544. https://doi.org/10.1109/TIT.2009.2034811
- R. Hecht-Nielsen, "Context Vectors: General Purpose Approximate Meaning Representations Self-Organized from Raw Data," Computational Intelligence: Imitating Life, J. Zurada, R. Marks, and C. Robinson, Eds., IEEE Press, 1994, pp. 43-56.
- D. Achlioptas, "Database-Friendly Random Projections," Proc. Symp. Principles Database Syst., Santa Barbara, CA, USA, May 2001, pp. 274-281.
- J.G. Proakis and D.K. Manolakis, Digital Signal Processing, 4th ed., Upper Saddle River, NJ: Prentice Hall, 2006.
- S.M. Ross, Introduction to Probability Theory, New York: Academic Press, 1981.
-
E. Candes and J. Romberg,
$\ell$ 1-Magic: reconstruction of sparse signals. Available: http://users.ece.gatech.edu/-justin/l1magic/
Cited by
- 2D DOA Estimation Using Sparse Representation of Higher-Order Power of Covariance Matrix vol.998, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/amr.998-999.779
- Texture classification with cross-covariance matrices in compressive measurement domain vol.10, pp.8, 2013, https://doi.org/10.1007/s11760-016-0902-9
- Compressive sensing-based two-dimensional scattering-center extraction for incomplete RCS data vol.42, pp.6, 2013, https://doi.org/10.4218/etrij.2019-0017