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This paper addresses nonnegative independent 
component analysis (NICA), with the aim to realize the 
blind separation of nonnegative well-grounded 
independent source signals, which arises in many practical 
applications but is hardly ever explored. Recently, 
Bertrand and Moonen presented a multiplicative NICA 
(M-NICA) algorithm using multiplicative update and 
subspace projection. Based on the principle of the mutual 
correlation minimization, we propose another novel cost 
function to evaluate the diagonalization level of the 
correlation matrix, and apply the multiplicative 
exponentiated gradient (EG) descent update to it to 
maintain nonnegativity. An efficient approach referred to 
as the EG-NICA algorithm is derived and its validity is 
confirmed by numerous simulations conducted on 
different types of source signals. Results show that the 
separation performance of the proposed EG-NICA 
algorithm is superior to that of the previous M-NICA 
algorithm, with a better unmixing accuracy. In addition, 
its convergence speed is adjustable by an appropriate 
user-defined learning rate. 
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I. Introduction 

Blind source separation (BSS) is a signal processing problem 
that arises in many applications. It occurs when one attempts to 
extract latent sources from their observed mixtures without 
detailed knowledge of the source signals and the mixing 
process. Various approaches have been proposed to solve the 
BSS problem by exploiting available a priori information. 
Often, the mutual statistical independence between the sources 
is utilized in pioneering literature, which leads to finding a 
transformation in which the transformed signals are as 
independent as possible, that is, well-known independent 
component analysis (ICA) [1], [2]. 

As a physical condition in the real world, the nonnegativity 
constraint has attracted growing attention during the last decade, 
for example, as it applies to natural image [3], [4], spectral data 
[5]-[7], chemistry [8], music transcription [9], [10], and so on. 
The case of both nonnegative sources and nonnegative mixing 
coefficients without the independence assumption has been 
handled by using nonnegative matrix factorization algorithms 
[11], [12], wherein a nonnegative matrix is factorized into two 
smaller nonnegative matrices. However, the nonnegativity 
constraint alone is insufficient to yield a unique solution [13]. 
Plumbley and Oja considered the combination of 
nonnegativity and independence assumptions on the sources 
(no constraint is imposed on the mixing coefficients concerning 
the values [positive or negative] of the elements) and 
introduced nonnegative ICA (NICA) [14]-[17]. Thus, a closely 
related nonnegative principle component analysis (NPCA) 
algorithm was proposed to tackle the NICA problem [16]. 
Essentially, it is a special case of the nonlinear PCA algorithm 
with a rectification nonlinearity function, searching for an 
orthogonal rotation in which all of the whitened data fits into 
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the positive region. However, it cannot ensure the negativity 
during the prewhitening process, resulting in degraded 
separation performance. Recently, Bertrand and Moonen 
presented a multiplicative NICA (M-NICA) algorithm [18]. 
Based on the minimization of mutual correlation, a cost 
function is constructed and the popular multiplicative update 
rule [12], [19] is utilized to minimize it under nonnegativity 
constraints. Though the M-NICA algorithm yields a better 
unmixing accuracy than the NPCA algorithm, it converges 
much more slowly since its learning rate cannot be user-
defined due to the mechanism of the multiplicative update itself. 

In this paper, the exponentiated gradient NICA (EG-NICA) 
algorithm is proposed. Starting from the same principle of 
mutual correlation minimization in [18], which means the 
covariance matrix should be approaching a diagonal matrix as 
much as possible, we establish another novel cost function to 
evaluate its diagonalization level. Then, the multiplicative 
exponentiated gradient descent update [20] is applied to 
decorrelate the data while at the same time maintain 
nonnegativity. Consequently, its convergence speed and 
unmixing accuracy depend on the learning rate, and 
experiments on different types of signals demonstrate that the 
unmixing accuracy can be improved significantly by choosing 
an appropriate parameter. Finally, a correction step based on 
subspace projection is required to restore the original signal 
subspace. 

The rest of this paper is organized as follows. Section II 
briefly introduces the data model and the NPCA algorithm as 
well as the M-NICA algorithm. The proposed EG-NICA 
algorithm is derived in section III. Some simulation results and 
performance comparisons are provided in section IV. Finally, a 
concise summary is presented in section V. 

II. Data Model and Related Algorithms 

Consider the simplest form of the noise-free NICA problem, 
that is, linear instantaneous mixing. The M signals observed by 
a set of sensors 1( ) [ ( ), , ( )]T

Mt x t x t=x …  at time instant t are 
expressed as the linear mixture of N mutually independent 
source signals 1( ) [ ( ), , ( )]T

Nt s t s t=s … without any time delay: 

( ) ( ),t t= ⋅x A s                 (1) 

where the unknown M N×  matrix A is called the mixing 
matrix (usually M N≥ ). We deem the source sn nonnegative 
if Pr( 0) 0, 1, ,ns n N< = = … . As done in [16], [18], here, an 
additional assumption that the sources are well grounded is 
made. This means that they have a non-zero probability density 
function all the way down to zero, that is, Pr( ) 0ns δ< >  for 
any 0δ > . In practice, the sources are often well grounded, 

for example, when the sources have an on-off behavior or 
when the sources are sparse [18]. 

The task of NICA is to figure out an N M×  unmixing 
matrix W , so that the estimated signals are 

( ) ( ) ( ) ( ),t t t t= ⋅ = ⋅ = ⋅y W x WA s G s         (2) 

where =G WA  is called the global matrix with only one 
non-zero element in each row and each column, which 
permutes and scales the sources. Typically, we assume that the 
sources have unit variance, with any scaling factor being 
absorbed into the mixing matrix A; then, y will be a 
permutation of s with just a sign ambiguity. 

In [15], the following theorem was proven. 
Theorem. Suppose that s is an N-dimensional vector of 

nonnegative and well-grounded mutually independent source 
signals with unit variance, and let ·=y U s  be an orthonormal 
rotation of s, that is, T T

N N×= =U U UU I , where N N×I  
denotes the N N×  identity matrix. Then, y is a permutation 
of s if and only if the signals in y are nonnegative with 
probability 1. 

Oja and Plumbley used the theorem to derive the 
aforementioned NPCA algorithm [16] for a simple solution to 
the NICA problem. The first stage is to whiten the observed 
data x by the whitening matrix V so that ·=z V x  with 

{ }TE =zz I . Therefore, it suffices to find an orthogonal matrix 
K for which ·=y K z  preserves the nonnegativity. The 
learning rule of the NPCA algorithm becomes 

( ) ( ) ,T Tf fη ⎡ ⎤Δ = − −⎣ ⎦K Ky y y y          (3) 

where the rectification nonlinearity function 
( )( ) min 0,i if y y= , with a positive learning rate η . 

A corollary from the above theorem was given in [18] as 
follows. 

Corollary. Suppose that s is an N-dimensional vector of 
nonnegative and well-grounded mutually independent source 
signals with unit variance. Let ·=x A s  with a full column 
rank M N×  mixing matrix A, and let ·=y W x  with an 
N M×  unmixing matrix W. Then, y is a permutation of s if 
and only if the signals in y are mutually uncorrelated and 
nonnegative with probability 1. 

Simplified from the NICA problem, this corollary finds an 
N M× unmixing matrix W, which results in N nonnegative 
uncorrelated signals. Assuming we collect an M L×  data 
matrix X that contains L number of [ ],  1, ,l l L= …x  
observations in its columns, then the rows of the N L×  
matrix =Y WX  are uncorrelated and only contain 
nonnegative values. Denote the covariance matrix 
as ( )( )T

Y = − −C Y Y Y Y , where 1
L LL ×=Y Y1 , with L L×1  

being an L L×  matrix in which each element is 1. It is 
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obvious that 0≥Y  and YC  is a diagonal matrix due to the 
rows of Y being uncorrelated.  

Accordingly, the M-NICA algorithm [18] constructs the cost 
function as 

2

,

[ ]
( ) .

[ ] [ ]
Y ij

i j Y ii Y jj

F =∑
C

Y
C C

             (4) 

Let ( )F∇ Y  denote the gradient of the above cost function, 
and it can be split into a positive part and a negative part, that is, 

( ) ( ) ( ),F F F+ −∇ = ∇ − ∇Y Y Y           (5) 

where [ ( )] 0ijF+∇ ≥Y  and [ ( )] 0ijF−∇ ≥Y . Thus, the 
following multiplicative update rule [19] can be used to 
maintain nonnegativity for the M-NICA algorithm: 

[ ( )]
[ ] [ ] .

[ ( )]
ij

ij ij
ij

F
F

−

+

∇
←

∇
Y

Y Y
Y

            (6) 

Note that no user-defined learning rate is required in (6), 
making it incapable of controlling the slow convergence of the 
M-NICA algorithm. 

III. Proposed EG-NICA Algorithm 

Based on the same principle of the mutual correlation 
minimization, we decide to construct a new cost function to 
measure the diagonalization level of the covariance matrix 

YC  instead of evaluating the sum of the squared correlation 
coefficients of the rows of Y  as (4). Hadamard inequation 
[21] tells us that: 

1/2
2

11

det( ) [ ] .
m m

ij
ji ==

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠
∑∏H H           (7) 

Equation (7) holds true for any rectangular m m×  matrix 
H . If H  happens to be a diagonal matrix, then the equation 
sign comes into existence. Therefore, we introduce the 
following cost function: 

1/2
2

11

( ) ln [ ] det( ) .
N N

Y ij Y
ji

F
==

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∏Y C C       (8) 

Then, NICA is translated into such an optimization problem: 

min ( ),                        

s.t. 0 and .

F⎧⎪
⎨

≥ =⎪⎩
Y

Y

Y Y WX
            (9) 

To derive the learning rule of the proposed EG-NICA 
algorithm, the multiplicative exponentiated gradient descent 
update [20] is applied: 

( )exp( ),mn mn mn
mn

Fy y y
y

μ ∂← −
∂

Y        (10) 

where the nonnegative learning rates μ  can take different 
forms. If Y  is initialized with nonnegative values, all of its 
elements mny  will remain nonnegative under the update in 
(10), so the nonnegativity constraint of (9) is automatically 
satisfied. The exponentiated gradient descent update can be 
further improved in terms of convergence, computational 
efficiency, and numerical stability in several ways. 

Here, for expression convenience, let 1 1
1 T

L L L LL× × ×= −P I 1 1 , 

then −B = YP = Y Y  and .T T T
Y = =C YPP Y YPY  

Additionally, let 
1/2
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Y 1 C B
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 (11) 

where the division operation denotes the element-wise division 
and  denotes the element-wise multiplication. The 
deduction of (11) is presented in the appendix. Note that 

( ) 1det( ) 2
T

T −∂ = ⋅
∂
YPY YPY YP
Y

because P  is a symmetric 

matrix [21]. Consequently, the derivative of the cost function in 
(8) with respect to Y  is calculated as 

( )1( ) ( ) ( ) 2 det( ) .Y Y
F D D −∂ ∂= − ⋅

∂∂
Y Y Y C B C

YY
  (12) 

By using (11) as a substitute in (12), it can be written as 

( )

( )1
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N N
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Y Y N N

N N
Y

Y Y N N
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1 C B
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(13)

 

Though the nonnegativity constraint is satisfied, the second 
constraint in (9), that is, =Y WX , also should be taken into 
account. The update process results in data that is not in the 
original signal subspace; hence, after each update in (10), a 
subspace projection-based correction step is enforced [18]: 

{ }.YΡ←Y Y                (14) 

In addition, the projection can be computed by a heuristic 
procedure. Represent X  by its best rank N  approximation 
by performing singular value decomposition [21]:  

{ }, , ( ),X X svd←U V X∑            (15) 
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Algorithm 1. Proposed EG-NICA algorithm. 

(1) Initialization: Replace Y with absolute values of the 
observation X, that is,  

1, , ,   1, , ,   [ ] [ ]ij iji N j L∀ = = ←Y X… …  

(2) Learning process: 
 for k=1:iteration times 

update Y by (10) and (13). 
project Y into the original signal subspace by (17). 

end; 
(3) Estimation: The unmixing matrix W can be computed as 

1 T
X X

−=W YV U∑ . 
 

 

,T
X X←X U V∑                (16) 

where ∑  is the N N×  diagonal matrix including the N  
largest singular values of X  and the columns of XU and 

XV are the corresponding left and right singular vectors, 
respectively. Then, (14) can be calculated by 

( )[ ] max [ ] ,0 ,T
ij X X ij←Y YV V          (17) 

which can also guarantee that the negative values are rejected. 
According to the above description, the main steps of the 

proposed EG-NICA algorithm are summarized in algorthm 1. 

IV. Simulation Results 

We provide several sets of simulation results to demonstrate 
the behavior of the proposed EG-NICA algorithm as well as 
the NPCA and M-NICA algorithms, and comparisons are also 
made among them with different types of source signals. In all 
the experiments of this paper, the three-source three-sensor 
model is adopted. The sources are nonnegative and scaled to 
unit variance. The 3×3 mixing matrix A is randomly generated 
by the Matlab code “randn,” which can generate normally 
distributed variables, so A can be either negative or 
nonnegative. Two different measures, the cross-talk error 
(CTE) and the signal-to-error ratio (SER), for assessment are 
utilized:  

( ){ }2

1

1 ,
N

n n
n

CTE E
N =

= −∑ s y  

{ }
( ){ }
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10 2
1
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N E=
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⎝ ⎠
∑
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To draw conclusions in a general sense, 1,000 Monte-Carlo 
simulations are performed and the averaged results are 
presented. 

 

Fig. 1. (a) CTE and (b) SER performance for uniformly 
distributed random signals on unit interval, averaged 
over 1,000 independent runs. 
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1. Experiment 1: Uniformly Distributed Random Signals on 
the Unit Interval 

In this experiment, we use a uniformly distributed random 
process on the unit interval (that is, [0, 1]) to generate L=1,000 
samples of the N=3 nonnegative source signals. Figures 1(a) 
and 1(b) respectively show the CTE and the SER performance 
for the three algorithms versus the iteration number. Both the 
NPCA and the EG-NICA algorithm depend on a user-defined 
learning rate, that is, η  and ,μ  respectively. Here, the 
learning rate for NPCA is set to be 2η = , which is observed 
to provide the best results (in terms of convergence speed and 
unmixing accuracy). Otherwise, NPCA will either have 
extremely slow convergence if the chosen η is too small or 
undesired oscillation of the separation performance and might 
not converge at all if η is too large. 

From Fig. 1, we can see that the differences between the 
unmixing accuracy of the three algorithms are almost 
indistinguishable. However, NPCA converges much faster than 
M-NICA and EG-NICA, with the former algorithm based on 
rectified nonlinear PCA and the latter two algorithms based on 
mutual correlation minimization, which may explain the 
inherent reason for this phenomenon. On the other hand, EG-
NICA under different learning rates outperforms M-NICA, 
considering the convergence speed, especially when 20μ = . 
Additionally, as we might expect, it becomes slower as μ  
decreases. 

What should be noticed is that the random signals disaccord 
with the well-grounded assumption in section II. In Experiment  
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Fig. 2. (a) CTE and (b) SER performance for sparse signals on
unit interval, averaged over 1,000 independent runs. 
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2, sparse signals that can be deemed as well-grounded signals 
are used. 

2. Experiment 2: Sparse Signals on the Unit Interval 

To satisfy the well-grounded constraint, that is, 0,δ∀ >  
Pr(0 ) 0,ns δ≤ < >  sparse signals on the unit interval 
containing clusters of zero-valued samples can be generated by 
modeling the on-off behavior of the sources. For the details of 
this process, refer to [18]. 

Figures 2(a) and 2(b) respectively show the CTE and the 
SER performance for the three algorithms versus the iteration 
number. The learning rate for NPCA is set to be 0.5η = , 
which is observed to provide the best results in this sparse 
signal case. It is easy to observe that compared to the previous 
experiment, all three algorithms achieve a faster convergence 
speed, and the improvement is especially obvious for M-NICA 
and EG-NICA. The signal sparsity contributes to this 
phenomenon. Furthermore, though NPCA still converges the 
fastest, the unmixing accuracy of M-NICA and EG-NICA is 
significantly better than that of NPCA. For example, the SER 
of M-NICA is nearly 6 dB higher than that of NPCA, as shown 
in Fig. 2(b). 

As for EG-NICA, its unmixing accuracy enhances as the 
learning rate μ  decreases. The SER of EG-NICA with 

5μ =  can achieve about 5 dB higher than M-NICA, which is 
11 dB higher than NPCA. The advantage appears to be of vital 
usefulness when the separation accuracy is emphasized in 
practical applications. Otherwise, if the convergence speed is  

 

Fig. 3. Image separation for proposed EG-NICA algorithm, 
showing (a) three source images, (b) three mixed 
images, and (c) three recovered images. 
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considered, EG-NICA with 20μ =  behaves almost the same 
as M-NICA, that is, the differences in convergence speed and 
unmixing accuracy are negligible. In a word, the proposed EG-
NICA is able to act superiorly to M-NICA with a properly 
chosen user-defined learning rate. 

3. Experiment 3: Image Signals 

The blind separation of image signals is suitable for the 
NICA problem since the pixel values of images are 
nonnegative integers, which are located between 0 and 255. 
The three source images used in this experiment are shown in 
Fig. 3(a). They are natural images of size 128×128 
(downsampled by a factor of four from the 512×512 original 
images [22]). Each source is the sequence of pixel values of 
length L=1282, which is obtained as we scan across each image 
from top left to bottom right. After scaling each source into unit 
variance, the source covariance matrix is  

1.0000 0.0552 -0.1060
0.0552 1.0000 -0.0449 ,
-0.1060 -0.0449 1.0000

cov
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

       (18) 

which indicates that the source image signals are slightly 
correlated, and the small correlation is validated to be 
acceptable for the NICA problem. 

The mixed images and the recovered images by the 
proposed EG-NICA algorithm in a typical run are shown in 
Figs. 3(b) and 3(c), respectively. After learning over 3×103 
steps, the global matrix G  becomes 
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0.0968 -0.1974
-0.0991 0.2704

-0.1505 0.2730

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

0.9594
G 0.9911

0.9488
         (19) 

with a dominant element in each row and each column, which 
indicates that the group of recovered signals is a permutation of 
the group of corresponding source signals. Therefore, we can 
say that the proposed EG-NICA algorithm is able to realize the 
successful blind separation of images. 

V. Conclusion 

In this paper, we considered the nonnegative ICA problem 
and proposed a novel EG-NICA algorithm for well-grounded 
source signals. The EG-NICA algorithm is derived by applying 
the multiplicative exponentiated gradient descent update rule to 
the constructed cost function, proposed based on the mutual 
correlation minimization principle. Simulations on different 
types of signals were carried out to illustrate its separation 
performance. Compared with the NPCA algorithm, it is 
gradient-based and depends on the learning rate. Though EG-
NICA converges more slowly than NPCA, its SER to evaluate 
the unmixing accuracy can achieve nearly 11 dB higher than 
that of NPCA for sparse signals, which is rather considerable. 
Compared to another related algorithm, referred to as M-NICA, 
EG-NICA has a flexible learning rate and has superior behavior, 
both in terms of convergence speed and unmixing accuracy if 
an appropriate learning rate is selected. Therefore, the proposed 
EG-NICA is best suited for those practical applications calling 
for accurate separation. In future research, it would be 
interesting and valuable to explore NICA algorithms for signals 
without the requirement that the signals be well grounded. 

Appendix. The Deduction of (11) 
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(A5) 
Substituting (A4) and (A5) into (A1), 
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Thus, it is obvious that (A6) can be extended as follows: 
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where the division operation denotes the element-wise division 
and  denotes the element-wise multiplication. 

The deduction is completed. 
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