A Hardware-Based String Matching Using State
Transition Compression for Deep Packet Inspection

Thisetter proposes a memory-based paralld string matching
engine using the compressed dtate trangtions. In thefinite-state
machines of each string matcher, the pointers for representing
the existence of date trangtions are compressed. In addition,
the hit fidds for dtoring state trandtions can be shared.
Therefore, the total memory requirement can be minimized by
reducing the memory sizefor storing Satetrangtions.

Keywords: Sring matching, intrusion detection system, deep
packet ingpection, pattern mapping.

I. Introduction

In the deep packet ingpection (D), a string matching engine
IS hecessary to detect target patterns from packet payloads [1].
Due to the increase in the number of target patterns and wire
peed, multiple hardware-based string matchers can be adopted,
wherein the matches with target patterns are recognized in
pardld. The memory-based determinigtic finite automaton
(DFA) provides both regularity and scaability in hardware-
based string metching [2]. However, memory requirements are
proportiond to 2" when theinput congists of n bits, asshownin
the Aho-Corasick dgorithm [3]. To implement the memory-
based DFA with a reasonable Sze, the number of date
trangtions should be reduced. The bit-glit sring matching
engine[4] anditsextensons[5], [6] adopt homogeneousfinite-
gate machine (FSM) tiles in hardware-based string matchers,
inwhich acharacter input symboal is split into multiple input bit

Manuscript received Apr. 21, 2012; revised July 9, 2012; accepted July 19, 2012,

This ressarch was supported by the KCC (Korea Communications Commission), Koreg,
under the R&D program supervised by the KCA (Korea Communications Agency) (KCA-
2012-12-921-05-001).

Hyundn Kim (phone +82 31 8005 3636, hyunjin2kim@gmal.com) is with the
Depatment of Electronics and Eledtricdl Enginearing, Dankook University, Yongin, Rep. of
Korea

SaungWoo Lee (beawoo@etri.rekr) is with the Communications Intemet Research
Laboratory, ETRI, Dagjeon, Rep. of Korea

http://cix.doi.org/10.4218/etrij.13.0212.0165

154 HyunJin Kim and Seung-Woo Lee

©2013 ETRI

HyunJin Kim and Seung-Woo Lee

pasition groups for eech FSM tile. Therefore, the tota number
of date trangtions for each date is reduced. However, the
number of state trangitions toward noninitid satesis incressed
due to the smdl size of the input symbol for each FSM tile. In
addition, because each FSM tile should have its own match
vector table, the memory requirements for storing metch
vectors are greet. To minimize the memory requirements for
date trandtions, the hardware-based bit-gplit string metcher in
[7] does not ore the gate trangtions toward the initid Sate.
However, due to the increase in the memory requirements for
goring the exisence of date trangtions, this architecture is
limited to the bit-gplit string matching.

Thisletter proposes amemory-based pardld string matching
engine that compressss the information of date trandtions.
Firgly, by adopting the proposed transition existence tables, the
pointers for representing the existence of sate trangtions are
compressed in the FSM of each string matcher. In addition, by
sharing date trangtions, the memory sze for goring the date
trangition table can be reduced.

I1. Proposed String Matcher Architecture

The dring matching engine has multiple homogeneous
gdring matchers to detect target patterns in pardld. Figure 1
illugrates the proposed dring metcher architecture. The
number in the angle bracket of the first row represents the
width of entries according to the predetermined number of
entriesin each table. After dassifying packet data, payload data
can be inputted a each cyde, where the date trangtion for the
input deta.can be found in a pipdining fashion. In this case, the
memory blocks are accessed in order.

The most significant bit (MSB) trandtion table and the
match vector lookup table are shown in Fg. 1(a). The sate
pointer indicates the present state between S gates. The sth

ETRI Journal, Volume 35, Number 1, February 2013

MSB transition Match vector
existence table lookup table
Match
Base Input index Match vector
logy K <2™> [log, P H <P>
0 0
State - l 1
pointer = 8
s—P p
<[logg S|> - :
S2 pP-2
S-1 P-1
v n/2 MSB bits v
from payload
@E Tl pay! Match vector
Ci: <o),
Transition |¢— Base ¥ Offset
existence & =0

4» +
pointer 0
<[logaK] 4—‘

(a) MSB transition existence table and match vector lookup table

LSB transition
- existence table
Transition
table Base Input
log, TH| <22>
State Transitio 0
logzSPl existence |1
0 pointer Hl
N —P k
ot =t | k-2
State K-1
.| pointer n/2 LSB bits
4 from payload
Comtng ¢
$:i Cp<2M>
¢ Base Y Offset
Next transition ¢:=0 Ly @
pointer o< 0
Jloga T Lg
(b) LSB transition existence table and transition table
Transition existence Next transition State
pointer pointer pointer
MSB LSB Obtain MSB
Payload #1 | transition check | transition check transition transition check
MSB LSB Obtain
Payload #2 transition check | transition check transition
MSB LSB
Payload #3 transition check | transition check

(c) Process of obtaining state transitions

Fig. 1. Architecture of proposed string matcher.

entry in the MSB trandtion table contains a match index,
which indicates a unique meatch vector in the match vector
lookup table. To recognize the matches with unique patterns,
the required number of entriesin the lookup table is set asthe
number of bits in a match vector, P. Asin [4]-[7], by only
obsarving each bit in one match vector, the rdaed pattern
match can be recognized, which is different from the two-stage
fring matching in [8], in which multiple maich vectors are
searched to recognize each pattern match.

The sth entry contains the base address in the base fidd for
generating the trandtion exigence pointer. The trangtion

ETRI Journal, Volume 35, Number 1, February 2013

existence pointer indicates the k-th entry of the least Sgnificant
bit (LSB) trandtion exigence table. The base address means
the garting addressin the LSB trangtion table for the k-th entry.
The mth bit in the input fidd represents the exisence of the
date trangtions toward a noninitid sate when the vadue of n/2
MSBsin an n-bit input symbol ism-1. Assumethat the state of
the sth entry has only one gtate trangition toward a noninitia
gate when the vaue of the input symbal is b'00110011, in
which the itdic b means the binary number notation. For the
date, the input fidd contains b’ 0000 0000 0000 1000 because
the MSBs are three or b’ 0011. In Fig. 1(a), the counting vaue
C, can be obtained by counting the number of “1” bitsfrom the
first low-order bit to the bit podtion according to the n/2
MSBs, the counting value is used for the offset to calculate the
trangition existence pointer. For example, when a gate has two
date trangtions for the inputs with b’ 1000 and b'0011 MSBs,
an input fiedd can be b'0000 0001 0000 1000. For the two
inputs, the counting value C; is st as b'0010 and b'0001,
respectively; when the MSBs of the inputs are not b'0010 and
b’ 0001 because thetype of bit intheinput fidld for the MSBsis
“0,” the counting vaue C; isset asb'0000. If C; isnot zero, the
trangtion exigence pointer is calculated with the addition of the
base address and offsat. In this case, the gate trangtion toward
noninitid sates exists for the MSBs of the input symbal. If C;
iszero, thetrangtion existence pointer is et as zero to represent
that there are no date trangtionstoward noninitia states.

As shown in Fg. 1(b), the next trandtion pointer indicates
the t-th entry of the transition table. An entry contains the base
address in the base fidd for generating the next trangtion
pointer. The base address means the darting address in the
trangtion table for the entry. In the input fidd, each bit
representsthe exigence of the date trangtionstoward theinitia
date for the /2 LSBs of the n-bit input symbol from the
payload, which is smilar to the structure of the MSB trangition
existence table. The counting vaue C; is obtained by counting
the number of “1” bits from the firgt low-order bit to the bit
position according to the /2 LSBs. Inthe LSB trangition table,
C, isused for the offset to caculate the next trangtion pointer;
if C, isnot zero, the next trangtion pointer is caculated with
the addition of the base addressand offset. In this case, the Sate
trangtion toward noninitid Sates exids for the LSBs of the
input symbol. When G, is zero, the next trangition pointer is set
as zero to represent that there are no dtete trangtions toward
noninitid states. An entry in the trangition table contains the
date pointer to indicate the entry of the MSB trangtion
exigence table. The process of obtaining date trandtions is
summarized in Fg. 1(c), in which there are three deps for
obtaining the next state pointer.

Consdering the parameters for the size of the memory blocks
the memory requirements of astring matcher aregiven as

HyunJin Kim and Seung-Woo Lee 155

S-(log, K +22 +log, P)+ P? +T-log, S+ K - (log, T +22),

@
where the other logics for cdculating counting values are not
considered dueto their negligiblesize.

[11. Sharing State Trangtions and Pattern Mapping

The predetermined number of state pointers to be stored in
the trangition table of Fig. 1(b) can be reduced by sharing Sate
trangitions. By splitting the entries according to the LSBs of the
input symbol, the Sate trangtions toward noninitid states can
be shared. In other words, if two states can share the same date
trangitions toward noninitid states for the LSBs for the input
symbal from the payload, the state trandtion pointers in the
trangtion table are shared. To describe the Sate trandtionsto be
shared, an example of DFA for patterns { he, she, his, hers} is
illugrated in Fg. 2, in which date sis the initid gae The
dates represented in gray are the output statesin which patterns
are matched. The dashed line indicates faling pointers for
noninitid gaes. The faling pointers for the initid Sate are not
shown for darity. In dates s, &, S, ad S, if the input is a
character of “s” the next sate can be s;. In this casg, the LSB
of “s’ isb'0011 for dl four sates (S, Ss, S ad S). Therefore,
the generated next trangtion pointers can indicate the same
entry in the trangtion table for the ate trandtion; the date
pointers can be shared. To share the date trangitions between
dates in the trandtion table, the vaues in the base and input
fieds of one gate in the LSB trangtion exigtence table should
beidenticd with thosein the other sates and vice versa.

Severd parameters limit the number of target patterns that
are mapped onto each homogeneous gtring matcher. Firdly, the
maximum number of dates, S and the number of bitsin a
meatch vector, P, should be consdered. In addition, the number
of entries in the trangtion table, T, limits the number of date
trangtions to be gtored. Unlike the exiding gtring matching
architecturesin [4]-[7], the predetermined number of entriesin
the LSB trangtion exigencetable, K, should aso be consdered.

Target patterns can be mapped onto a string matcher based
on a predetermined order, one by one, until al target patterns
are mapped, as shown in [4]. Initidly, to map the first P target
patterns among the unmapped target patterns, the mapping
dgorithm checks whether memory table contents can be
obtained under the resource limitations by S K, and T. If
memory table contents can be obtained, the iteration is sopped;
otherwise, the number of the adopted target patterns for the
gring matcher decreases by one, and the dgorithm then checks
whether memory table contents can be obtained. When the
predetermined order is given, the time complexity can be O(T)
to map al target patterns. A pattern length means the

156 HyunJin Kim and Seung-Woo Lee

Fig. 2. Example of DFA for patterns{ he, she, his, hers}.

Table 1. Total memory requirements by varying Sand P.

e 128 256

P 16| 24| 324 | 32]4]e6a]s
Backdoor| 101 | 93 | 95 | 100 | 115 | 109 | 116 | 126
Deleted | 87 | 84 | 87 | 92 | 93 | 95 | 101 | 110
Sp”p“ ut“a'e 263 | 244 | 252 | 266 | 278 | 268 | 286 | 311
Webmisc| 54 | 55 | 57 | 60 | 64 | 68 | 72 | 79

Unit of memory requirements above is kilobyte.

number of symbols in the patern. The patern length
didgribution and the number of dtae trangtions thet can be
shared can be different according to characterigtics of target
patterns. Therefore, the optimd parameter vaues will be
obtained by andyzing experiment resultsfor red rule sets.

IV. Experiment Results

In our experiments, four large rule sets were extracted from
Snort v2.8 rules [9]. Severd parameters were swept to find
their optima vaues The maximum number of gates S was
128 dfter consdering the maximum length of Snort rules.
When Swas 128, the number of bitsinaPMV P waseither 16,
24, 32, or 40; when the number of dates S was 256, P was
ether 32, 48, 64, or 80; the maximum number of entriesin the
L SB trangtion exigencetable, K, and the maximum number of
shared gatetrangtions, T, weredouble S respectively. In Table 1,
the totd memory requirements were shown by varying P. For
the rule sats, the totdl memory requirements were minimized
when S and P were 128 and 24, respectively. The memory
requirements were not minimized by only increasing P over
24; therefore, there was a threshold point of P for minimizing
memory requirements. In the evaduations in which Swas 256,

ETRI Journal, Volume 35, Number 1, February 2013

25 [Al4 45 el 27 W Proposed
20147}
7] [T
151 =
101 - - —
5 - -
Backdoor Deleted Spyware-put Web-misc

Fig. 3. Summary of comparisons in terms of normalized tota
memory requirements.

because the required K and P increased rapidly, the required
number of string matcherswas not decreased.

Then, by fixing Sand P as 128 and 24, K was varied to find
the optimd vaue K was ether 192, 256, 320, or 384 because
K should be greater than S Each state can have one or more
than one dae trangtion. In these evduations, T was fixed as
256. As a reault, when K was 256, the totd memory
requirements were gregtly reduced for dl rule sets This was
mainly due to the limited number of state trangtions toward
noninitia states in each dring matcher. With the optima K of
256, T was varied, thet is, T was ether 128, 192, 256, or 320.
The obtained optimd T was 256. In these evaduations, because
date pointers can be shared in the trangtion table, the required
T was andl. Condgdering the optimd vduesof K and T, it is
concdluded that many dae pointers can be shared in the
trangdtion tablein the proposed string matcher.

With the optimized parameters, Fig. 3 showsthe summary of
compaisons in tems of the normdized totd memory
requirements. The normdized totd memory requirements of a
rue st were obtaned &fter dividing totd memory
requirements by the total sum of bytes in the unique target
patterns of the rule st. In the proposed dring maiching
architecture, the normaized memory requirements were 9.4 to
11.4 (bytes/character). Even though the memory requirements
in [8 were 6.1 to 86 (bytes’character), the string matching
architecture in the multiple match vectors should be searched to
recognize each paitern. Therefore, the exiging string matching
architectures in [4]-[7] were evauated because the dring
metching architectures provided only one makch vector to
recognize matched patterns like the proposed string matcher. In
this comparison, the pattern mapping based on the generd
lexicographicd sorting in [4] was adopted for dl gring
matching architectures. For dl adopted rule sets, the tota
memory requirements were decreased on average by 46.4%,
31.1%, 28.1%, and 18.4%, compared with those of [4]-[7],

ETRI Journal, Volume 35, Number 1, February 2013

respectively. In addition, in [10], resources were reduced up to
40% compared to those in the traditiond DFA-based method.
Comparing the proposed gring meatching to [4] in terms of
memory requirements, it is asserted that the reduction achieved
proves that the proposed string matching can provide better
performance than that shownin [10].

V. Conclusion

This letter proposed a memory-efficient pardld string
matching engine in DFA-based string matching. The proposed
gdring matcher can reduce the memory size for gtoring the
exigence of dae trandtions In addition, the memory
requirements can be reduced by sharing date trandtions in the
trangtion table. Congdering the experiment results, it is evident
that the proposed architecture is useful for reducing the storage
cogt of the DFA-based gtring metching engine.

References

[1] A. Peravi and M.J. Rahimzadeh, “ A Novd Scaable and Storage-
Efficent Architecture for High Speed Exact String Matching,”
ETRI J,,val. 31, no. 5, Oct. 2009, pp. 545-553.

[2] P-C. Lin & d., “Usng String Maching for Deep Packet
Ingpection,” |EEE Computer, val. 41, no. 4, 2008, pp. 23-28.

[3] A.V. Aho and M.J. Coradick, “Efficient String Matching: An Aid
to Bibliogragphic Search,” Commun. ACM, val. 18, no. 6, 1975,
pp. 333-340.

[4] L. Tan, B. Brotherton, and T. Sherwood, “ Bit-Split String-Matching
Engines for Intrudon Detection and Prevention,” ACM Trans
Architecture Code Optimization, val. 3, no. 1, Mar. 2006, pp. 3-34.

[5] P. Piyachon and Y. Luo, “Compact State Machines for High
Performance Patern Matching,” Proc. IEEE Desgn Autom
Conf., 2007, pp. 493-496.

[6] C-H. Lin, Y.-T. Ta, and S-C. Chang, “Optimization of Pattern
Matching Algorithm for Memory Basad Architecture” Proc. 3rd
ACM/IEEE Symp. Architecture Netw. Commmun. Syst., 2007, pp.
11-16.

[7] H. Kim & 4., “A Memory-Effident Patern Matching with
Hardware Based Bit-Split String Matchers for Degp Packet
Ingoection,” |EICE Commun. Lett., val. E93-B, no. 2, Feb. 2010,
Pp. 396-398.

[8] H. Kim, H.-S. Kim, and S. Kang, “A Memory-Efficient Bit-Split
Padld String Matching Using Pattern Dividing for Intruson
Detection Sysems,” |EEE Trans Paralld Didrib. S, val. 22,
no. 11, Nov. 2011, pp. 1904-1911.

[9] Snort, Network Intrusion Detection System. http:/mww.snort.org

[10] A. Pandey & d., “Efficdent Design and Implementation of DFA
Based Pattern Matching on Hardware,” 1JCS, val. 9, issue 2, no.
1, Mar. 2012, pp. 286-290.

HyunJin Kim and Seung-Woo Lee 157

