
This letter proposes a memory-based parallel string matching 
engine using the compressed state transitions. In the finite-state 
machines of each string matcher, the pointers for representing 
the existence of state transitions are compressed. In addition, 
the bit fields for storing state transitions can be shared. 
Therefore, the total memory requirement can be minimized by 
reducing the memory size for storing state transitions. 
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I. Introduction 
In the deep packet inspection (DPI), a string matching engine 

is necessary to detect target patterns from packet payloads [1]. 
Due to the increase in the number of target patterns and wire 
speed, multiple hardware-based string matchers can be adopted, 
wherein the matches with target patterns are recognized in 
parallel. The memory-based deterministic finite automaton 
(DFA) provides both regularity and scalability in hardware-
based string matching [2]. However, memory requirements are 
proportional to 2n when the input consists of n bits, as shown in 
the Aho-Corasick algorithm [3]. To implement the memory-
based DFA with a reasonable size, the number of state 
transitions should be reduced. The bit-split string matching 
engine [4] and its extensions [5], [6] adopt homogeneous finite-
state machine (FSM) tiles in hardware-based string matchers, 
in which a character input symbol is split into multiple input bit 
                                                               

position groups for each FSM tile. Therefore, the total number 
of state transitions for each state is reduced. However, the 
number of state transitions toward noninitial states is increased 
due to the small size of the input symbol for each FSM tile. In 
addition, because each FSM tile should have its own match 
vector table, the memory requirements for storing match 
vectors are great. To minimize the memory requirements for 
state transitions, the hardware-based bit-split string matcher in 
[7] does not store the state transitions toward the initial state. 
However, due to the increase in the memory requirements for 
storing the existence of state transitions, this architecture is 
limited to the bit-split string matching. 
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This letter proposes a memory-based parallel string matching 
engine that compresses the information of state transitions. 
Firstly, by adopting the proposed transition existence tables, the 
pointers for representing the existence of state transitions are 
compressed in the FSM of each string matcher. In addition, by 
sharing state transitions, the memory size for storing the state 
transition table can be reduced.  

II. Proposed String Matcher Architecture 
The string matching engine has multiple homogeneous 

string matchers to detect target patterns in parallel. Figure 1 
illustrates the proposed string matcher architecture. The 
number in the angle bracket of the first row represents the 
width of entries according to the predetermined number of 
entries in each table. After classifying packet data, payload data 
can be inputted at each cycle, where the state transition for the 
input data can be found in a pipelining fashion. In this case, the 
memory blocks are accessed in order. 

The most significant bit (MSB) transition table and the 
match vector lookup table are shown in Fig. 1(a). The state 
pointer indicates the present state between S states. The s-th 
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Fig. 1. Architecture of proposed string matcher. 
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entry in the MSB transition table contains a match index, 
which indicates a unique match vector in the match vector 
lookup table. To recognize the matches with unique patterns, 
the required number of entries in the lookup table is set as the 
number of bits in a match vector, P. As in [4]-[7], by only 
observing each bit in one match vector, the related pattern 
match can be recognized, which is different from the two-stage 
string matching in [8], in which multiple match vectors are 
searched to recognize each pattern match. 

The s-th entry contains the base address in the base field for 
generating the transition existence pointer. The transition 

existence pointer indicates the k-th entry of the least significant 
bit (LSB) transition existence table. The base address means 
the starting address in the LSB transition table for the k-th entry. 
The m-th bit in the input field represents the existence of the 
state transitions toward a noninitial state when the value of n/2 
MSBs in an n-bit input symbol is m–1. Assume that the state of 
the s-th entry has only one state transition toward a noninitial 
state when the value of the input symbol is b’00110011, in 
which the italic b means the binary number notation. For the 
state, the input field contains b’0000 0000 0000 1000 because 
the MSBs are three or b’0011. In Fig. 1(a), the counting value 
C1 can be obtained by counting the number of “1” bits from the 
first low-order bit to the bit position according to the n/2 
MSBs; the counting value is used for the offset to calculate the 
transition existence pointer. For example, when a state has two 
state transitions for the inputs with b’1000 and b’0011 MSBs, 
an input field can be b’0000 0001 0000 1000. For the two 
inputs, the counting value C1 is set as b’0010 and b’0001, 
respectively; when the MSBs of the inputs are not b’0010 and 
b’0001 because the type of bit in the input field for the MSBs is 
“0,” the counting value C1 is set as b’0000. If C1 is not zero, the 
transition existence pointer is calculated with the addition of the 
base address and offset. In this case, the state transition toward 
noninitial states exists for the MSBs of the input symbol. If C1 
is zero, the transition existence pointer is set as zero to represent 
that there are no state transitions toward noninitial states. 

As shown in Fig. 1(b), the next transition pointer indicates 
the t-th entry of the transition table. An entry contains the base 
address in the base field for generating the next transition 
pointer. The base address means the starting address in the 
transition table for the entry. In the input field, each bit 
represents the existence of the state transitions toward the initial 
state for the n/2 LSBs of the n-bit input symbol from the 
payload, which is similar to the structure of the MSB transition 
existence table. The counting value C2 is obtained by counting 
the number of “1” bits from the first low-order bit to the bit 
position according to the n/2 LSBs. In the LSB transition table, 
C2 is used for the offset to calculate the next transition pointer; 
if C2 is not zero, the next transition pointer is calculated with 
the addition of the base address and offset. In this case, the state 
transition toward noninitial states exists for the LSBs of the 
input symbol. When C2 is zero, the next transition pointer is set 
as zero to represent that there are no state transitions toward 
noninitial states. An entry in the transition table contains the 
state pointer to indicate the entry of the MSB transition 
existence table. The process of obtaining state transitions is 
summarized in Fig. 1(c), in which there are three steps for 
obtaining the next state pointer. 

Considering the parameters for the size of the memory blocks, 
the memory requirements of a string matcher are given as  
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where the other logics for calculating counting values are not 
considered due to their negligible size.  

III. Sharing State Transitions and Pattern Mapping 

The predetermined number of state pointers to be stored in 
the transition table of Fig. 1(b) can be reduced by sharing state 
transitions. By splitting the entries according to the LSBs of the 
input symbol, the state transitions toward noninitial states can 
be shared. In other words, if two states can share the same state 
transitions toward noninitial states for the LSBs for the input 
symbol from the payload, the state transition pointers in the 
transition table are shared. To describe the state transitions to be 
shared, an example of DFA for patterns {he, she, his, hers} is 
illustrated in Fig. 2, in which state s0 is the initial state. The 
states represented in gray are the output states in which patterns 
are matched. The dashed line indicates failing pointers for 
noninitial states. The failing pointers for the initial state are not 
shown for clarity. In states s4, s6, s8, and s9, if the input is a 
character of “s,” the next state can be s7. In this case, the LSB 
of “s” is b’0011 for all four states (s4, s6, s8, and s9). Therefore, 
the generated next transition pointers can indicate the same 
entry in the transition table for the state transition; the state 
pointers can be shared. To share the state transitions between 
states in the transition table, the values in the base and input 
fields of one state in the LSB transition existence table should 
be identical with those in the other states and vice versa. 

Several parameters limit the number of target patterns that 
are mapped onto each homogeneous string matcher. Firstly, the 
maximum number of states, S, and the number of bits in a 
match vector, P, should be considered. In addition, the number 
of entries in the transition table, T, limits the number of state 
transitions to be stored. Unlike the existing string matching 
architectures in [4]-[7], the predetermined number of entries in 
the LSB transition existence table, K, should also be considered. 

Target patterns can be mapped onto a string matcher based 
on a predetermined order, one by one, until all target patterns 
are mapped, as shown in [4]. Initially, to map the first P target 
patterns among the unmapped target patterns, the mapping 
algorithm checks whether memory table contents can be 
obtained under the resource limitations by S, K, and T. If 
memory table contents can be obtained, the iteration is stopped; 
otherwise, the number of the adopted target patterns for the 
string matcher decreases by one, and the algorithm then checks 
whether memory table contents can be obtained. When the 
predetermined order is given, the time complexity can be O(T) 
to map all target patterns. A pattern length means the 

 

Fig. 2. Example of DFA for patterns {he, she, his, hers}. 
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Table 1. Total memory requirements by varying S and P. 

S 128 256 

P 16 24 32 40 32 48 64 80 

Backdoor 101 93 95 100 115 109 116 126

Deleted 87 84 87 92 93 95 101 110
Spyware-

put 263 244 252 266 278 268 286 311

Web-misc 54 55 57 60 64 68 72 79 

Unit of memory requirements above is kilobyte. 

number of symbols in the pattern. The pattern length 
distribution and the number of state transitions that can be 
shared can be different according to characteristics of target 
patterns. Therefore, the optimal parameter values will be 
obtained by analyzing experiment results for real rule sets. 

IV. Experiment Results 

In our experiments, four large rule sets were extracted from 
Snort v2.8 rules [9]. Several parameters were swept to find 
their optimal values. The maximum number of states S was 
128 after considering the maximum length of Snort rules. 
When S was 128, the number of bits in a PMV P was either 16, 
24, 32, or 40; when the number of states S was 256, P was 
either 32, 48, 64, or 80; the maximum number of entries in the 
LSB transition existence table, K, and the maximum number of 
shared state transitions, T, were double S, respectively. In Table 1, 
the total memory requirements were shown by varying P. For 
the rule sets, the total memory requirements were minimized 
when S and P were 128 and 24, respectively. The memory 
requirements were not minimized by only increasing P over 
24; therefore, there was a threshold point of P for minimizing 
memory requirements. In the evaluations in which S was 256, 
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Fig. 3. Summary of comparisons in terms of normalized total
memory requirements. 

5

Backdoor Deleted Spyware-put Web-misc

10

15

20

25 Proposed [7] [6] [5] [4] 

0

 
 
because the required K and P increased rapidly, the required 
number of string matchers was not decreased. 

Then, by fixing S and P as 128 and 24, K was varied to find 
the optimal value; K was either 192, 256, 320, or 384 because 
K should be greater than S. Each state can have one or more 
than one state transition. In these evaluations, T was fixed as 
256. As a result, when K was 256, the total memory 
requirements were greatly reduced for all rule sets. This was 
mainly due to the limited number of state transitions toward 
noninitial states in each string matcher. With the optimal K of 
256, T was varied, that is, T was either 128, 192, 256, or 320. 
The obtained optimal T was 256. In these evaluations, because 
state pointers can be shared in the transition table, the required 
T was small. Considering the optimal values of K and T, it is 
concluded that many state pointers can be shared in the 
transition table in the proposed string matcher. 

With the optimized parameters, Fig. 3 shows the summary of 
comparisons in terms of the normalized total memory 
requirements. The normalized total memory requirements of a 
rule set were obtained after dividing total memory 
requirements by the total sum of bytes in the unique target 
patterns of the rule set. In the proposed string matching 
architecture, the normalized memory requirements were 9.4 to 
11.4 (bytes/character). Even though the memory requirements 
in [8] were 6.1 to 8.6 (bytes/character), the string matching 
architecture in the multiple match vectors should be searched to 
recognize each pattern. Therefore, the existing string matching 
architectures in [4]-[7] were evaluated because the string 
matching architectures provided only one match vector to 
recognize matched patterns like the proposed string matcher. In 
this comparison, the pattern mapping based on the general 
lexicographical sorting in [4] was adopted for all string 
matching architectures. For all adopted rule sets, the total 
memory requirements were decreased on average by 46.4%, 
31.1%, 28.1%, and 18.4%, compared with those of [4]-[7], 

respectively. In addition, in [10], resources were reduced up to 
40% compared to those in the traditional DFA-based method. 
Comparing the proposed string matching to [4] in terms of 
memory requirements, it is asserted that the reduction achieved 
proves that the proposed string matching can provide better 
performance than that shown in [10]. 

V. Conclusion 

This letter proposed a memory-efficient parallel string 
matching engine in DFA-based string matching. The proposed 
string matcher can reduce the memory size for storing the 
existence of state transitions. In addition, the memory 
requirements can be reduced by sharing state transitions in the 
transition table. Considering the experiment results, it is evident 
that the proposed architecture is useful for reducing the storage 
cost of the DFA-based string matching engine. 
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