
This letter proposes a memory-based parallel string matching
engine using the compressed state transitions. In the finite-state
machines of each string matcher, the pointers for representing
the existence of state transitions are compressed. In addition,
the bit fields for storing state transitions can be shared.
Therefore, the total memory requirement can be minimized by
reducing the memory size for storing state transitions.

Keywords: String matching, intrusion detection system, deep
packet inspection, pattern mapping.

I. Introduction
In the deep packet inspection (DPI), a string matching engine

is necessary to detect target patterns from packet payloads [1].
Due to the increase in the number of target patterns and wire
speed, multiple hardware-based string matchers can be adopted,
wherein the matches with target patterns are recognized in
parallel. The memory-based deterministic finite automaton
(DFA) provides both regularity and scalability in hardware-
based string matching [2]. However, memory requirements are
proportional to 2n when the input consists of n bits, as shown in
the Aho-Corasick algorithm [3]. To implement the memory-
based DFA with a reasonable size, the number of state
transitions should be reduced. The bit-split string matching
engine [4] and its extensions [5], [6] adopt homogeneous finite-
state machine (FSM) tiles in hardware-based string matchers,
in which a character input symbol is split into multiple input bit

position groups for each FSM tile. Therefore, the total number
of state transitions for each state is reduced. However, the
number of state transitions toward noninitial states is increased
due to the small size of the input symbol for each FSM tile. In
addition, because each FSM tile should have its own match
vector table, the memory requirements for storing match
vectors are great. To minimize the memory requirements for
state transitions, the hardware-based bit-split string matcher in
[7] does not store the state transitions toward the initial state.
However, due to the increase in the memory requirements for
storing the existence of state transitions, this architecture is
limited to the bit-split string matching.

Manuscript received Apr. 21, 2012; revised July 9, 2012; accepted July 19, 2012.
This research was supported by the KCC (Korea Communications Commission), Korea,

under the R&D program supervised by the KCA (Korea Communications Agency) (KCA-
2012-12-921-05-001).

HyunJin Kim (phone: +82 31 8005 3636, hyunjin2.kim@gmail.com) is with the
Department of Electronics and Electrical Engineering, Dankook University, Yongin, Rep. of
Korea.

Seung-Woo Lee (beewoo@etri.re.kr) is with the Communications Internet Research
Laboratory, ETRI, Daejeon, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.13.0212.0165

This letter proposes a memory-based parallel string matching
engine that compresses the information of state transitions.
Firstly, by adopting the proposed transition existence tables, the
pointers for representing the existence of state transitions are
compressed in the FSM of each string matcher. In addition, by
sharing state transitions, the memory size for storing the state
transition table can be reduced.

II. Proposed String Matcher Architecture
The string matching engine has multiple homogeneous

string matchers to detect target patterns in parallel. Figure 1
illustrates the proposed string matcher architecture. The
number in the angle bracket of the first row represents the
width of entries according to the predetermined number of
entries in each table. After classifying packet data, payload data
can be inputted at each cycle, where the state transition for the
input data can be found in a pipelining fashion. In this case, the
memory blocks are accessed in order.

The most significant bit (MSB) transition table and the
match vector lookup table are shown in Fig. 1(a). The state
pointer indicates the present state between S states. The s-th

A Hardware-Based String Matching Using State
Transition Compression for Deep Packet Inspection

 HyunJin Kim and Seung-Woo Lee

154 HyunJin Kim and Seung-Woo Lee © 2013 ETRI Journal, Volume 35, Number 1, February 2013

Fig. 1. Architecture of proposed string matcher.

…

0
1

…

<

t

…

…

…

…

State

LSB transition
existence table

…

…

Counting

0

1

0
Next transition

pointer

Base

n/2 LSB bits
from payload

Transition
existence
pointer

Transition
table

State
pointer

0
1

…

K–2
K–1

…

k

Match vector

Match vector

0
1

…

P–2
P–1

0
1

…

S–2
S–1

s

…

…
 p

MSB transition
existence table

…

…

Base Input
Match
index

Counting

C1:<2(n/4)>

0

1

0

Transition
existence
pointer

Base

n/2 MSB bits
from payload

State
pointer

Match vector
lookup table

log2 S< >⎡ ⎤⎢ ⎥

2log K< >⎡ ⎤⎢ ⎥ <2(n/2)> 2log P< >⎡ ⎤⎢ ⎥

log2 K< >⎡ ⎤⎢ ⎥

Offset
c!=0 +

(a) MSB transition existence table and match vector lookup table

<P>

2log S< >⎡ ⎤⎢ ⎥

2log T< >⎡ ⎤⎢ ⎥ <2(n/2)>

T–2
T–1

log2 T< >⎡ ⎤⎢ ⎥

+
Offset

C2:<2(n/4)>

c!=0

Base Input

(b) LSB transition existence table and transition table

Transition existence
pointer

Next transition
pointer

State
pointer

Payload #1

Payload #2

Payload #3

MSB
transition check

LSB
transition check

MSB
transition check

LSB
transition check

MSB
transition check

Obtain
transition

MSB
transition check

Obtain
transition

LSB
transition check

(c) Process of obtaining state transitions

entry in the MSB transition table contains a match index,
which indicates a unique match vector in the match vector
lookup table. To recognize the matches with unique patterns,
the required number of entries in the lookup table is set as the
number of bits in a match vector, P. As in [4]-[7], by only
observing each bit in one match vector, the related pattern
match can be recognized, which is different from the two-stage
string matching in [8], in which multiple match vectors are
searched to recognize each pattern match.

The s-th entry contains the base address in the base field for
generating the transition existence pointer. The transition

existence pointer indicates the k-th entry of the least significant
bit (LSB) transition existence table. The base address means
the starting address in the LSB transition table for the k-th entry.
The m-th bit in the input field represents the existence of the
state transitions toward a noninitial state when the value of n/2
MSBs in an n-bit input symbol is m–1. Assume that the state of
the s-th entry has only one state transition toward a noninitial
state when the value of the input symbol is b’00110011, in
which the italic b means the binary number notation. For the
state, the input field contains b’0000 0000 0000 1000 because
the MSBs are three or b’0011. In Fig. 1(a), the counting value
C1 can be obtained by counting the number of “1” bits from the
first low-order bit to the bit position according to the n/2
MSBs; the counting value is used for the offset to calculate the
transition existence pointer. For example, when a state has two
state transitions for the inputs with b’1000 and b’0011 MSBs,
an input field can be b’0000 0001 0000 1000. For the two
inputs, the counting value C1 is set as b’0010 and b’0001,
respectively; when the MSBs of the inputs are not b’0010 and
b’0001 because the type of bit in the input field for the MSBs is
“0,” the counting value C1 is set as b’0000. If C1 is not zero, the
transition existence pointer is calculated with the addition of the
base address and offset. In this case, the state transition toward
noninitial states exists for the MSBs of the input symbol. If C1
is zero, the transition existence pointer is set as zero to represent
that there are no state transitions toward noninitial states.

As shown in Fig. 1(b), the next transition pointer indicates
the t-th entry of the transition table. An entry contains the base
address in the base field for generating the next transition
pointer. The base address means the starting address in the
transition table for the entry. In the input field, each bit
represents the existence of the state transitions toward the initial
state for the n/2 LSBs of the n-bit input symbol from the
payload, which is similar to the structure of the MSB transition
existence table. The counting value C2 is obtained by counting
the number of “1” bits from the first low-order bit to the bit
position according to the n/2 LSBs. In the LSB transition table,
C2 is used for the offset to calculate the next transition pointer;
if C2 is not zero, the next transition pointer is calculated with
the addition of the base address and offset. In this case, the state
transition toward noninitial states exists for the LSBs of the
input symbol. When C2 is zero, the next transition pointer is set
as zero to represent that there are no state transitions toward
noninitial states. An entry in the transition table contains the
state pointer to indicate the entry of the MSB transition
existence table. The process of obtaining state transitions is
summarized in Fig. 1(c), in which there are three steps for
obtaining the next state pointer.

Considering the parameters for the size of the memory blocks,
the memory requirements of a string matcher are given as

ETRI Journal, Volume 35, Number 1, February 2013 HyunJin Kim and Seung-Woo Lee 155

22 2
2 2 2 2(log 2 log) log (log 2),

n n

S K P P T S K T⋅ + + + + ⋅ + ⋅ +

(1)
where the other logics for calculating counting values are not
considered due to their negligible size.

III. Sharing State Transitions and Pattern Mapping

The predetermined number of state pointers to be stored in
the transition table of Fig. 1(b) can be reduced by sharing state
transitions. By splitting the entries according to the LSBs of the
input symbol, the state transitions toward noninitial states can
be shared. In other words, if two states can share the same state
transitions toward noninitial states for the LSBs for the input
symbol from the payload, the state transition pointers in the
transition table are shared. To describe the state transitions to be
shared, an example of DFA for patterns {he, she, his, hers} is
illustrated in Fig. 2, in which state s0 is the initial state. The
states represented in gray are the output states in which patterns
are matched. The dashed line indicates failing pointers for
noninitial states. The failing pointers for the initial state are not
shown for clarity. In states s4, s6, s8, and s9, if the input is a
character of “s,” the next state can be s7. In this case, the LSB
of “s” is b’0011 for all four states (s4, s6, s8, and s9). Therefore,
the generated next transition pointers can indicate the same
entry in the transition table for the state transition; the state
pointers can be shared. To share the state transitions between
states in the transition table, the values in the base and input
fields of one state in the LSB transition existence table should
be identical with those in the other states and vice versa.

Several parameters limit the number of target patterns that
are mapped onto each homogeneous string matcher. Firstly, the
maximum number of states, S, and the number of bits in a
match vector, P, should be considered. In addition, the number
of entries in the transition table, T, limits the number of state
transitions to be stored. Unlike the existing string matching
architectures in [4]-[7], the predetermined number of entries in
the LSB transition existence table, K, should also be considered.

Target patterns can be mapped onto a string matcher based
on a predetermined order, one by one, until all target patterns
are mapped, as shown in [4]. Initially, to map the first P target
patterns among the unmapped target patterns, the mapping
algorithm checks whether memory table contents can be
obtained under the resource limitations by S, K, and T. If
memory table contents can be obtained, the iteration is stopped;
otherwise, the number of the adopted target patterns for the
string matcher decreases by one, and the algorithm then checks
whether memory table contents can be obtained. When the
predetermined order is given, the time complexity can be O(T)
to map all target patterns. A pattern length means the

Fig. 2. Example of DFA for patterns {he, she, his, hers}.

s

s0 s1 s2 s3 s4

s5 s6

s7 s8 s9

h e r s

s

h e

s

i
r

s

h

s
h

s

h

h

h

s

h

h

s

{he}

{his}

{she}

{hers}

Table 1. Total memory requirements by varying S and P.

S 128 256

P 16 24 32 40 32 48 64 80

Backdoor 101 93 95 100 115 109 116 126

Deleted 87 84 87 92 93 95 101 110
Spyware-

put 263 244 252 266 278 268 286 311

Web-misc 54 55 57 60 64 68 72 79

Unit of memory requirements above is kilobyte.

number of symbols in the pattern. The pattern length
distribution and the number of state transitions that can be
shared can be different according to characteristics of target
patterns. Therefore, the optimal parameter values will be
obtained by analyzing experiment results for real rule sets.

IV. Experiment Results

In our experiments, four large rule sets were extracted from
Snort v2.8 rules [9]. Several parameters were swept to find
their optimal values. The maximum number of states S was
128 after considering the maximum length of Snort rules.
When S was 128, the number of bits in a PMV P was either 16,
24, 32, or 40; when the number of states S was 256, P was
either 32, 48, 64, or 80; the maximum number of entries in the
LSB transition existence table, K, and the maximum number of
shared state transitions, T, were double S, respectively. In Table 1,
the total memory requirements were shown by varying P. For
the rule sets, the total memory requirements were minimized
when S and P were 128 and 24, respectively. The memory
requirements were not minimized by only increasing P over
24; therefore, there was a threshold point of P for minimizing
memory requirements. In the evaluations in which S was 256,

156 HyunJin Kim and Seung-Woo Lee ETRI Journal, Volume 35, Number 1, February 2013

Fig. 3. Summary of comparisons in terms of normalized total
memory requirements.

5

Backdoor Deleted Spyware-put Web-misc

10

15

20

25 Proposed [7] [6] [5] [4]

0

because the required K and P increased rapidly, the required
number of string matchers was not decreased.

Then, by fixing S and P as 128 and 24, K was varied to find
the optimal value; K was either 192, 256, 320, or 384 because
K should be greater than S. Each state can have one or more
than one state transition. In these evaluations, T was fixed as
256. As a result, when K was 256, the total memory
requirements were greatly reduced for all rule sets. This was
mainly due to the limited number of state transitions toward
noninitial states in each string matcher. With the optimal K of
256, T was varied, that is, T was either 128, 192, 256, or 320.
The obtained optimal T was 256. In these evaluations, because
state pointers can be shared in the transition table, the required
T was small. Considering the optimal values of K and T, it is
concluded that many state pointers can be shared in the
transition table in the proposed string matcher.

With the optimized parameters, Fig. 3 shows the summary of
comparisons in terms of the normalized total memory
requirements. The normalized total memory requirements of a
rule set were obtained after dividing total memory
requirements by the total sum of bytes in the unique target
patterns of the rule set. In the proposed string matching
architecture, the normalized memory requirements were 9.4 to
11.4 (bytes/character). Even though the memory requirements
in [8] were 6.1 to 8.6 (bytes/character), the string matching
architecture in the multiple match vectors should be searched to
recognize each pattern. Therefore, the existing string matching
architectures in [4]-[7] were evaluated because the string
matching architectures provided only one match vector to
recognize matched patterns like the proposed string matcher. In
this comparison, the pattern mapping based on the general
lexicographical sorting in [4] was adopted for all string
matching architectures. For all adopted rule sets, the total
memory requirements were decreased on average by 46.4%,
31.1%, 28.1%, and 18.4%, compared with those of [4]-[7],

respectively. In addition, in [10], resources were reduced up to
40% compared to those in the traditional DFA-based method.
Comparing the proposed string matching to [4] in terms of
memory requirements, it is asserted that the reduction achieved
proves that the proposed string matching can provide better
performance than that shown in [10].

V. Conclusion

This letter proposed a memory-efficient parallel string
matching engine in DFA-based string matching. The proposed
string matcher can reduce the memory size for storing the
existence of state transitions. In addition, the memory
requirements can be reduced by sharing state transitions in the
transition table. Considering the experiment results, it is evident
that the proposed architecture is useful for reducing the storage
cost of the DFA-based string matching engine.

References

[1] A. Peravi and M.J. Rahimzadeh, “A Novel Scalable and Storage-
Efficient Architecture for High Speed Exact String Matching,”
ETRI J., vol. 31, no. 5, Oct. 2009, pp. 545-553.

[2] P.-C. Lin et al., “Using String Matching for Deep Packet
Inspection,” IEEE Computer, vol. 41, no. 4, 2008, pp. 23-28.

[3] A.V. Aho and M.J. Corasick, “Efficient String Matching: An Aid
to Bibliographic Search,” Commun. ACM, vol. 18, no. 6, 1975,
pp. 333-340.

[4] L. Tan, B. Brotherton, and T. Sherwood, “Bit-Split String-Matching
Engines for Intrusion Detection and Prevention,” ACM Trans.
Architecture Code Optimization, vol. 3, no. 1, Mar. 2006, pp. 3-34.

[5] P. Piyachon and Y. Luo, “Compact State Machines for High
Performance Pattern Matching,” Proc. IEEE Design Autom.
Conf., 2007, pp. 493-496.

[6] C.-H. Lin, Y.-T. Tai, and S.-C. Chang, “Optimization of Pattern
Matching Algorithm for Memory Based Architecture,” Proc. 3rd
ACM/IEEE Symp. Architecture Netw. Commun. Syst., 2007, pp.
11-16.

[7] H. Kim et al., “A Memory-Efficient Pattern Matching with
Hardware Based Bit-Split String Matchers for Deep Packet
Inspection,” IEICE Commun. Lett., vol. E93-B, no. 2, Feb. 2010,
pp. 396-398.

[8] H. Kim, H.-S. Kim, and S. Kang, “A Memory-Efficient Bit-Split
Parallel String Matching Using Pattern Dividing for Intrusion
Detection Systems,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 11, Nov. 2011, pp. 1904-1911.

[9] Snort, Network Intrusion Detection System. http://www.snort.org
[10] A. Pandey et al., “Efficient Design and Implementation of DFA

Based Pattern Matching on Hardware,” IJCSI, vol. 9, issue 2, no.
1, Mar. 2012, pp. 286-290.

ETRI Journal, Volume 35, Number 1, February 2013 HyunJin Kim and Seung-Woo Lee 157

