
The problem of the sentence-based pronunciation 
evaluation task is defined in the context of subjective 
criteria. Three subjective criteria (that is, the minimum 
subjective word score, the mean subjective word score, 
and first impression) are proposed and modeled with the 
combination of word-based assessment. Then, the 
subjective criteria are approximated with objective 
sentence pronunciation scores obtained with the 
combination of word-based metrics. No a priori studies of 
common mistakes are required, and class-based language 
models are used to incorporate incorrect and correct 
pronunciations. Incorrect pronunciations are 
automatically incorporated by making use of a 
competitive lexicon and the phonetic rules of students’ 
mother and target languages. This procedure is applicable 
to any second language learning context, and subjective-
objective sentence score correlations greater than or equal 
to 0.5 can be achieved when the proposed sentence-based 
pronunciation criteria are approximated with 
combinations of word-based scores. Finally, the subjective-
objective sentence score correlations reported here are 
very comparable with those published elsewhere resulting 
from methods that require a priori studies of 
pronunciation errors. 
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I. Introduction 

The spread and popularity of computer-aided pronunciation 
training in second language learning (2LL) certainly depends 
on the flexibility to apply several evaluation criteria and the 
efficient generation of didactical material with minimal human 
supervision. When learning a foreign language, several criteria 
must be used to evaluate a speaker’s proficiency, including the 
mastery of morphosyntactical, lexical, discoursal, and 
pragmatic features, among others. In the case of oral 
production, phonetic considerations must be added, including 
segmental and suprasegmental characteristics. For example, 
students of the basic Spanish language courses can be 
evaluated on oral expression according to the following 
criteria: communicative success, grammar, vocabulary, and 
fluency.1)

Considering oral expression, it is well known that subjective 
evaluation of pronunciation is extremely complex, as there are 
several aspects that require observation, such as intelligibility 
and allophonic accuracy. 

Regarding allophonic evaluation, state-of-the-art automatic 
speech recognition (ASR)-based computer-aided pronunciation 
training (CAPT) methods still show limitations and thus lack 
accuracy. On the other hand, accurate identification of phonetic 
substance does not ensure the understanding of the message by 
the listener, who in many cases must rely on extra-phonetic 
information. Given this context, the automatic evaluation of 
oral production should rely on units larger than the phoneme 
and answer such questions about the expression as the 
following: Is it intelligible? Is it grammatical? Does it make 
sense? Is it coherent? It might be convenient to holistically 

 
1) http://sip.la.psu.edu/blp/files/criteria_oral.pdf 
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evaluate the expression, based on first impression, or to 
evaluate each of the aforementioned aspects separately to 
obtain an average. It might also be convenient to consider the 
lowest score as a referent. It might be adequate to take into 
account the opinion of several judges, as different listeners may 
focus their attention on different problems. 

The problem of pronunciation quality evaluation in CAPT for 
2LL has been addressed by several authors by making extensive 
use of scores obtained with subword models. Those scores are 
usually combined with flat weights to produce a sentence-based 
objective evaluation. Pronunciation quality scores have usually 
been based on duration, syllabic-timing, and hidden Markov 
model (HMM) log-likelihoods [1], [2]. Initially, those features or 
confidence metrics attempted to compare the observed signal 
with native and nonnative models by employing the forced 
Viterbi algorithm [2]. Also shown in [2], the phoneme log-
posterior score, which is based on the Bayes classification rule 
for a single feature, leads to a higher correlation between 
subjective and objective evaluations than the ordinary features or 
confidence metrics by themselves. In addition, the use of 
nonnative a priori acoustic information can be considered as an 
important source of information to improve the evaluation 
accuracy by increasing the discriminability between correct and 
incorrect pronunciations [3].  

Combining several features or confidence metrics to evaluate 
pronunciation quality has also been used in recent papers. In 
[4], a statistical combination of some measures was 
implemented to make a more robust automatic score 
pronunciation assessment. Some of the confidence measures 
that are usually employed in CAPT are log-likelihood ratio 
between native English and nonnative English HMMs given a 
spoken sentence, log-likelihood ratio between native English 
and nonnative English HMMs at the phoneme level, phoneme 
recognition rate, and word recognition rate. In [5], a Bayesian 
network structure with four metrics was proposed to take into 
consideration the possible pronunciation errors, to jointly 
evaluate pronunciation quality and reading skills. In [6], ASR 
technology was employed to model nonnative speaker 
pronunciation mistakes as phonetic variants in automatically 
generated competitive lexicons without the use of a detailed 
study of common pronunciation mistakes in an isolated-word 
pronunciation assessment. 

Surprisingly, the problem of assessing the pronunciation 
quality in sentences has not been addressed as a different task 
and has not been modeled as the combination of the 
pronunciation quality of words. In [2], [7]-[12], several features, 
such as average phone confidence, time normalized phone 
confidence, and fricative confidence were combined to 
evaluate the pronunciation quality of sentences. The 
pronunciation quality of sentences has not been modeled 

explicitly as the combination of the pronunciation quality of 
words. For instance, in [8], [13], sentences were considered as 
scoring units. However, it is very noticeable that one 2LL 
teacher can score an utterance differently than another, 
depending on the adopted criterion, based on the pronunciation 
of each word. For instance, the whole sentence subjective 
evaluation may be determined by the worst pronounced word. 

The contribution of this paper concerns the following: a) the 
definition of the sentence-based pronunciation evaluation task 
in the context of subjective criteria; b) modeling subjective 
criteria for the pronunciation evaluation of sentences; c) an 
analysis of the subjective pronunciation evaluation of sentences, 
based on the combination of word-based assessment; d) the 
generation of objective sentence pronunciation scores as the 
combination of word-based scores; e) a method to assess the 
pronunciation quality of sentences in 2LL without the need of a 
priori studies of common mistakes; and f) the use of a class-
based language model to automatically incorporate a 
competitive lexicon and students’ mother and target language 
phonetic rules to represent incorrect and correct pronunciations. 
The results presented here suggest that subjective-objective 
score correlation for sentences as high as 0.5 (interannotator 
correlation is equal to 0.65), with five levels of pronunciation 
quality, can be achieved. As mentioned above, the proposed 
method does not require any analysis of common mistakes. 
Controlled environments are not required to obtain the results 
reported herein, which are achieved using inexpensive desktop 
microphones. The observed performance is comparable to 
performances achieved using methods reliant upon a priori 
studies of pronunciation errors, which in turn also require a 
complete definition of the target utterances. Consequently, the 
integration of new target sentences with the ASR-based 
pronunciation quality evaluation technology is more efficient 
and requires less human assistance in the scheme presented 
here. 

II. Automatic Pronunciation Assessment of Sentences 
with ASR 

As discussed below, assessing the pronunciation of sentences 
in 2LL corresponds to a much more complex problem than the 
pronunciation evaluation of single words. Several criteria can 
be applied by a human evaluator to assess the pronunciation 
quality of sentences. For instance, the subjective score 
associated with a single word, SubjWordScoreW, could be 
defined based on the acoustic production quality of phonemes 
[6]. In contrast, the reference subjective score associated with a 
whole sentence, SubjSentenceScoreS, depends on at least one of 
the following three criteria that can be employed by the 
teacher: the minimum SubjWordScoreW within the sentence, 
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the perceived average of SubjWordScoreW within the sentence, 
and first impression. On the other hand, three possible 
combinations of objective word score, ObjWordScoreW, in the 
sentence can be considered to estimate the objective sentence 
score, ObjSentenceScoreS: the minimum ObjWordScoreW, the 
averaged ObjWordScoreW, and the mode of ObjWordScoreW. 

1. Subjective Score Criteria in Sentences 

Consider a target sentence { ,1 ,2 ,3, , ,...,m m m mS W W W=  
}, ,, ...,

mm l m LW W composed of Lm words, where Wm,l denotes the 
l-th word. As mentioned above, could 
be the result of one of the following criteria applied by the 
target language human expert. 

SmSubjSentenceScore

• Subjective Criterion 1 (SubjCrit1): The subjective 
pronunciation score of target sentence Sm corresponds to 
the lowest subjective score associated with one of the 
words Wm,l, where 1 ≤ l ≤ Lm: 

{ },1
min .Sm l Lm

SubjSentenceScore SubjWordScore
≤ ≤

= Wm l   (1) 

• Subjective Criterion 2 (SubjCrit2): The subjective 
pronunciation score of target sentence Sm corresponds to 
the average of the subjective scores associated with words 
Wm,l, where 1 ≤ l ≤ Lm: 

1

1 .
Lm

Sm
m l

SubjSentenceScore SubjWordScore
L =

= ⋅∑ Wm,l   (2) 

• Subjective Criterion 3 (SubjCrit3): The subjective 
pronunciation score of target sentence Sm is determined by 
the first impression without an explicit analysis on each 
pronounced word. Basically, in this case, the subjective 
evaluation is given after having heard a recorded utterance 
only once. 

2. Objective Sentence Scores as a Combination of Word-
Based Objective Scores 

If each word Wm,l in sentence Sm, where 1 ≤ l ≤ Lm, is 
associated with an objective score 

,
, then 

objective sentence score can be 
estimated by employing one of the following metric 
combinations. 

Wm lObjWordScore

SmObjSentenceScore

• Objective Metric Combination 1 (ObjMetrComb1): 
The objective pronunciation score of target sentence Sm 
corresponds to the lowest objective score associated with 
one of the words Wm,l , where 1 ≤ l ≤ Lm: 

{ },1
min .Sm l Lm

ObjSentenceScore ObjWordScore
≤ ≤

= Wm l    (3) 

• Objective Metric Combination 2 (ObjMetrComb2): 
The objective pronunciation score of target sentence Sm 

corresponds to the average word-based objective score: 

,
1

1 .
Lm

S Wm m
m l

ObjSentenceScore ObjWordScore
L =

= ⋅∑ l   (4) 

• Objective Metric Combination 3 (ObjMetrComb3): 
The objective pronunciation score of target sentence Sm is 
equal to the statistic mode or most frequent word score 
within Sm:  

{ },1
max ,

Sm

Wm ll Lm

ObjSentenceScore

Frequency ObjWordScore
≤ ≤

⎡ ⎤= ⎣ ⎦
     (5) 

where ,Wm lFrequency ObjWordScore⎡ ⎤
⎣ ⎦  indicates how 

many times word score appears in S
,Wm lObjWordScore m. 

3. Subjective and Objective Score Correlation in Sentences 

At this point, the correspondence between the subjective 
score criteria in subsection II.1 and the objective score 
combinations in subsection II.2 seems straightforward in the 
following two cases: SubjCrit1 and ObjMetrComb1; SubjCrit2 
and ObjMetrComb2. However, SubjCrit3, considered the first 
impression, is much more difficult to define. A possibility is to 
model SubjCrit3 with the mode of the objective metrics within 
the target utterance (that is, ObjMetrComb3). In this sense, the 
best objective score combination matching is evaluated for 
each subjective criterion. In this paper, the accuracy of 
objective metric combinations is estimated by means of the 
correlation between the subjective scores provided by human 
experts and the ASR-based objective metrics. 

III. ASR-Based Objective Metric with Competitive 
Vocabulary and Class-Based Language Model 

In this paper,  is estimated as a 
combination of , , which is in turn obtained 
by a continuous speech recognition system with a class-based 
language model [14], [15]. Given target sentence S

SmObjSentenceScore

Wm lObjWordScore

m as defined 
above, competitive class { ,1 ,2, ,...,m m mClass Class Class=  

}, ,...,m l m LmClass Class ,  is defined, where Classm,l can be 
composed of word Wm,l according to the target pronunciation, a 
competitive lexicon, and phonetic variants of Wm,l. Both the 
competitive lexicon and phonetic variants require no a priori 
analysis of common mistakes and are automatically generated. 
The continuous speech recognition system is employed to 
make the target pronunciation of sentence Sm compete with the 
pronunciation of sentences composed of similar words and 
phonetic variants of target words. To do so, a class-based  
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Fig. 1. Block diagram of proposed method for pronunciation evaluation of sentences. 
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trigram language model is generated for each sentence Sm by 
estimating Pr(Classm,l|Classm,l−1,Classm,l−2). Figure 1 shows the 
block diagram of the proposed scheme to assess pronunciation 
quality of sentences based on continuous speech recognition. 
Per each target word, N-best list analysis resulting from Viterbi 
decoding delivers a set of J word features, 

⎦ which 
are detailed later. By making use of the Bayes decision rule, 
each word feature  is mapped to an objective 

.
. The word features are then combined by 

employing multiclassifier fusion techniques to obtain the 
objective pronunciation metric associated with word 
W

1 2 ,j J
W W W WWm,l m,l m,l m,lm,l

WF WF ,WF ,...,WF ,...,WF⎡=
⎣

⎤

j
Wm,l

WF
j

Wm l
ObjWordScore

m,l, , . Finally, the objective pronunciation 
score that corresponds to sentence S

Wm lObjWordScore
m is obtained by 

combining  where 1 ≤ l ≤ L
,

,Wm l
ObjWordScore m, according 

to subsection II.2. 

1. Automatic Generation of Competitive Class 

Each word within the target sentence generates a class 
composed of a) target word Wm,l with the correct pronunciation, 
b) a competitive lexicon similar to the target word with the 
correct pronunciation, and c) phonetic variants of the target 
word according to the target or the student’s native language. 
As a result, class Classm,l can be represented as 

{ }, , , ,, ,m l m l m l m lClass W CL PV= ,           (6) 

where { }1 2 3 Kk m,l
m,l m,l m,l m,l m,l m,lCL CL ,CL ,CL ,...,CL ,...,CL= denotes 

the competitive lexicon composed of words , where 
1 ≤ k ≤ K

k
m,lCL

m,l and Km,l is the number of words in CLm,l and PVm,l 
denotes the phonetic variants of the target word according to 
the target and the student’s native language within Classm,l. No 
previous analysis based on errors made by students is required 
to achieve an efficient integration of didactic material to the 
ASR technology without human assistance. Observe that the 
definition and automatic generation of Classm,l attempt to find a 
tradeoff between the accuracy of the pronunciation assessment 
and the limitation of the ASR technology: the higher the 

number of competing words and phonetic variants, the more 
difficult the recognition task itself. It is worth mentioning that 
the competitive lexicon and the phonetic variants are generated 
by employing an acoustic-phonetic criterion only. The 
motivation is to optimize the performance of ASR technology, 
which in turn shows an inherent accuracy and limitation in 
pronunciation quality evaluation tasks. Consequently, the 
syntactic structure of the target sentence is not taken into 
consideration in the application addressed here. The automatic 
generation of CLm,l and PVm,l is described as follows. 

A. Automatic Generation of Competitive Lexicon 

Competitive vocabulary CL m,l  helps to force the 
simultaneous competition of the correct and incorrect 
pronunciation and is crucial to make ASR technology 
successful in CAPT. This paper employs the same approach 
proposed in [6]. First, the Kullback-Leibler (K-L) distance 
defined in [17] between target word Wm,l and the words from a 
lexicon representative of the target language is estimated. It is 
worth highlighting that the K-L distance between the target 
word and the words from a lexicon is normalized with respect 
to the phoneme alignment length [6]. Second, the lexicon 
whose distance to the target word is within an interval defined  
by a minimum, , and a maximum, , threshold is 
sorted with respect to the distance to the target word and 
uniformly sampled to reduce the number of selected words to 
the maximum number of competitive words (MNCW). 
Parameters 

min
CLD max

CLD

min max CL CLD ; D⎡ ⎤⎣ ⎦  define a tradeoff between the 

discrimination ability resulting from the distance between the 
competitive lexicon and the target word and the accuracy of the 
speech recognition technology. 

B. Automatic Generation of Phonetic Variants of Target Words 
Based on Mother and Target Languages 

To improve the accuracy of the pronunciation quality 
evaluation, variants of the phonetic realization of target word 
Wm,l according to the target and the student’s native language 
(in this case, Spanish), { }1 2 3 4 ,m,l m,l m,l m,l m,lPV PV ,PV ,PV ,PV⊂   
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Fig. 2. Generation of phonetic variants. 
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are included in the competitive class Classm,l. This strategy 
attempts to incorporate information about the user’s native 
language without implementing a detailed study of 
pronunciation mistakes made by students. The phonetic 
variants are generated as follows. 

As shown in Fig. 2, target word Wm,l can be decomposed 
according to English or the phonetic rules of the student’s 
native language (in this case, Spanish). In the case of English 
phonetic decomposition, there are two possibilities: using 
English phonemes or replacing English phonemes with the 
most similar phonemes in the student’s native language 
according to the data listed in Table 1. In the case of 
decomposition according to the phonetic rules of the student’s 
native language, there are also two possibilities: employing 
Spanish phonemes or replacing Spanish phonemes with the 
most similar phonetic units in English according to the data 
listed in Table 2. It is worth highlighting that Tables 1 and 2 are 
generated by an expert in the English language and phonetics. 
As a result, the phonetic variant component PVm,l in Classm,l 
according to (6) is defined as follows. 

• is the decomposition of target word W1
m,lPV m,l according to 

English language phonetic rules by replacing English 
phonemes with those of the student’s language that are 
most similar according to the data listed in Table 1. 

• is the decomposition of target word W2
m,lPV m,l according to 

the phonetic rules and phonemes of the student’s language. 
• is the decomposition of target word W3

m,lPV m,l according to 
phonetic rules of the student’s language by replacing 
phonemes with those of English that are the most similar 
according to the data in Table 2. 

• includes and  simultaneously 
in Class

4
m,lPV 1 ,m,lPV 2 ,m,lPV 3

m,lPV
m,l. 

Then, where 1 ≤ i ≤ 4, is included in PV,i
m,lPV m,l if the K-L 

distance between  and target word Wi
m,lPV m,l is greater than 

or equal to min
PVD . Threshold min

PVD  defines a tradeoff between 
the discrimination ability resulting from the distance between 
the phonetic variants and the target word and the accuracy of  

Table 1. English phonemes are replaced with most similar Spanish 
phonemes to generate phonetic variant 1

m,lPV . 

English Spanish English Spanish English Spanish

Ah, Ae, as Hh js Zh, Jh, Y ys 

Aa, Ao os K ks T ts 

B, V bs L ls Uh, Uw us 

Ch, Sh chs M ms Oy os is 

D, Dh ds N ns Aw as us 

Eh, Er es Ow os us W gs us 

F fs P ps Ng ns gs 

G gs R rs Ay as is 

Ih, Iy is S, Z, Th ss Ey es is 

Table 2. Spanish phonemes are replaced with most similar English 
phonemes to generate phonetic variant 3

m,lPV . 

Spanish English Spanish English Spanish English

as Ah is Ih ps P 

bs B js Hh rs R 

chs Ch ks K ss S 

ds D ls L ts T 

es Eh ms M us Uh 

fs F ns N ys Y 

gs G os Aa   

 

 
the speech recognition technology. 

2. Class-Based Language Model in ASR 

Continuous speech recognition is run by using a class-based 
language model [14], [15]. As mentioned above, competitive 
class Classm is generated from sentence Sm. Then, trigrams 
Pr(Classm,p|Classm,q,Classm.r) are defined as follows. 

( ) 1  if 1 1 3,
0 otherwise. m,p m,q m,rClass |Class ,Cl q p r qsP sr a p= − ∧ = − ∧ ≥⎧=⎨
⎩

  (7) 
When p=2, Pr(Classm,p|Classm,q,Classm.r) is replaced with 

bigram Pr(Classm,p|Classm,q). 

( ) 1   if  1 and 2,
0  otherwise. m,p m,q

q p pP Class | Classr = − =⎧= ⎨
⎩

  (8) 

The class-based language model attempts to identify 
mispronounced words within the target sentence. 

3. Word-Based N-Best List Feature Extraction 

Given a target utterance, ASR with a class-based language 
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model enables the efficient extraction of several features per 
word. In this paper, four confidence measures delivered by the 
ASR procedure are employed: N-best position, recognition flag, 
word density, and logarithmic word density. 

The position in the N-best list of word Wm,l in target sentence 
Sm, POSm,l, corresponds to the index of the most likely 
hypothesis in which Wm,l is recognized: 

( ){ }, , ,( , )m l r r m lPOS argmax Q h r E W H= ∈⎡ ⎤⎣ ⎦    (9) 

where Q(hr) = P(hr)γ·P(O/hr), hr is the r-th hypothesis in the  
N-best Viterbi list, Q(hr) is the likelihood score given by the 
Viterbi search, P(hr) is the language model probability of hr, 
P(O/hr) is the observation probability of hr, γ is the acoustic 
model scaling factor, E(Wm,l, H) corresponds to the indices of 
the hypotheses in which word Wm,l is contained, and, finally, H 
denotes all the N-best alignments or hypotheses obtained from 
Viterbi decoding. 

The recognition flag binary confidence measure associated 
with word Wm,l in target sentence Sm, denoted by RECm,l, is 
defined as  

, 1
,

, 1

,1 if
0 i ,f

m l
m l

m l

W h
REC

W h∉
∈⎧= ⎨

⎩
           (10) 

where h1 is the first hypothesis in the N-best Viterbi list. The 
word density confidence measure of word Wm,l in target 
sentence Sm, WDCMm,l, is defined as [16] 

,( ),
,

1

( )
,

( )

rr E W Hm l
m l N

ll

Q h
WDCM

Q h

∈

=

=
∑

∑
      (11) 

where Q(hr) and E(Wm,l, H) are defined as above. The 
logarithmic word density confidence measure of target word 
Wm,l, LogWDCMm,l, is defined as 

( )
)

,

1

,( ,
log( ( ))

,
log( )

rr E W Hm l
m l N

ll

Q h
LogWDCM

Q h

∈

=

=
∑
∑

     (12) 

where Q(hr) and E(Wm,l, H) are defined as above. 

4. Word-Based Objective Pronunciation Score Estimation 

As in [6], the word-based objective pronunciation score, 

,
, is estimated by employing multiclassifier 

system (MCS) techniques, as shown in Fig. 1. As described 
above, four word features or confidence metrics are evaluated 
per word in the target sentences: POS

Wm lObjWordScore

m,l, RECm,l, WDCMm,l, and 
LogWDCMm,l. The problem of word-based pronunciation 
quality evaluation is modeled as a mapping between 
confidence metrics and score 

,
, which 

emulates the opinion given by a human instructor, 

 Suppose that subjective score 

,  is quantized in V levels (in this paper, 
V=5). Consequently, every confidence metric could be 
assumed to be a score delivered by a given classifier, and every 
subjective score level would be a class. Consider that O is the 
sequence of observation vectors corresponding to target 
sentence S

Wm lObjWordScore

, .Wm lSubjWordScore
Wm lSubjWordScore

m uttered by a student. By using the Bayes rule, 
 can be estimated as ,Wm lObjWordScore

( ) ,

,

,

( ( ) / ) ( )
,

( ( ))
m l

m l

m lv

v v

C

W
W

W

P O CWF
ObjWordScore

W

P C
O argmax

P OF

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

(13) 
where 

,m lW  is the final decision for W( )ObjWordScore O

)

m,l 
and corresponds to signal O and 1 ≤ v ≤ V. Theoretically, the 
classification error is optimally minimized by (13). P(Cv) is 
assumed uniformly distributed and equal to 1/V. However, the 
a priori multivariable probability density functions (PDFs) 

,
( ( ) /

m lW vP WF O C and
,

( (
m lWP F OW )) may require an 

unmanageable amount of training data to be estimated reliably 
[18]. As a consequence, the problem is substantially simplified 
if maximization in (13) can be expressed in terms of 
computations performed by individual classifiers. The classical 
techniques to simplify the Bayesian fusion [18]-[20] are 
product rule, max rule, min rule, mean rule, and majority vote 
rule (MVR). Among the several MCS combination rules in the 
literature, mean rule and MVR are the most frequently 
employed approximations to simplify the Bayesian fusion [21], 
[22]. Product rule corresponds to the optimal Bayesian fusion if 
the classifiers are statistically independent. MVR allows 
combining local decisions of individual classifiers. The mean 
rule is defined as 

( )

( )

,,

,

,

1

1

1 ( / ( ))

( ( ) / ) ( )1 .
( )

mm l v

m l

v

l

m l

J
j

C W
j

jJ

W v

W
C j

j W

v v

ObjW O argmax P C WF O
J

P WF O C P C
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(14) 
As mentioned above, 1 ≤ v ≤ V, and the total number of 

possible levels of pronunciation quality is V, and the total 
number of word features or confidence metrics is J. 

MVR is a straightforward scheme to combine the output of 
individual classifiers [21]. Given a set of individual classifier 
decisions, the final decision will be the class that receives the 
largest number of votes as the consensus. 

IV. Experiments 

The native American English acoustic models were trained 
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with the CSR-I WSJ02) corpus [23]. In CSR-I WSJ0, speech 
data was recorded with a high-quality microphone and the 
sample rate was equal to 16 kHz. All the 20,055 training 
utterances in CSR-I WSJ0 are used to train English CDHMMs 
(approximately 40 hours of speech). Also, LATINO 40 [24] is 
employed to train the Spanish phonetic units used to generate 
the phonetic variants according to part B of subsection III.1. 
This database is composed of continuous speech from 40 Latin 
American native speakers, with each speaker reading 125 
sentences from newspapers in Spanish (approximately 2.5 
hours of speech). The training utterances were 4,500 WAV 
PCM sentences provided by 36 speakers and context-
dependent phoneme HMMs were employed. The vocabulary 
is composed of almost 6,000 words. The CSR-I WSJ0 and 
Latino-40 databases are selected because they were recorded 
by native speakers in a controlled environment with high 
quality microphones. Also, they correspond to medium 
vocabulary, which in turn guarantees that they are 
representative of the phonetic variability in English and 
Spanish. The difference in size is compensated by the number 
of triphonemes to train: 12,491 in CSR-I WSJ0 and 2,447 in 
Latino-40. Also, recognition experiments with Latino-40 show 
that the database size is enough to lead to state-of-the-art word 
error rates. Thirty-three MFCC parameters per frame are 
computed: the frame energy plus ten static coefficients and 
their first and second time derivatives. The number of static 
features is chosen to optimize the recognition accuracy. 
Observe that the accuracy of the method presented here is 
extremely dependable for speech recognition technology. 
Cepstral mean normalization (CMN) is also employed. Each 
monophone and triphoneme is modeled with a three-state left-
to-right topology without a skip-state transition, with eight 
multivariate Gaussian densities per state with diagonal 
covariance matrices. The language model is estimated 
according to subsection III.2. As explained above, a 
competitive class, as defined in (6), is generated for each target 
word within a given target sentence. The competitive lexicon 
for each target word is chosen from the vocabulary that 
composes the CSR-I WSJ0 corpus, as in [6]. The phonetic 
variants of each target word are generated according to part B 
of subsection III.1 and Fig. 2. Four confidence measures 
delivered by the ASR procedure are employed: POSm,l, RECm,l, 
WDCMm,l, and LogWDCMm,l. 

The data base is composed of 423 utterances from 43 
speakers with different levels of English proficiency and is 
recorded using inexpensive desktop microphones. The 
sentences are extracted from a web-based 2LL system and are 
selected by an expert in the English language and phonetics to 
                                                               

2) CSR-I (WSJ0) Sennheiser, Publisher by LDC, ISBN: 1-58563-006-3

achieve a phonetically balanced evaluation data set. Examples 
of the sentences contained are “It was nice to see my relatives” 
and “I missed my Kiwi family.” The database is arbitrarily 
divided into subset 1 (212 utterances) and subset 2 (211 
utterances). The experiments are performed by using subset 1 
and subset 2 as training and testing data, respectively, and vice-
versa. Consequently, each experiment employs all 423 
utterances. The training data is employed to estimate the a 
priori PDFs in (14), which correspond to nonparametric 
distributions (that is, histograms). 

The subjective scores are determined with seven experts in 
the English language. The pronunciation quality of each word 
within target utterance l, , is evaluated by ,Wm lSubjWordScore

two experts in the English language, as in [6]. If the evaluations 
diverge from one another, the opinion of a third expert is taken 
into consideration. The scoring is done using a 1 to 5 scale: 
score 5 corresponds to the correct pronunciation of the target 
word, and score 1 denotes the worst possible pronunciation, 
generally the result of the application of Spanish pronunciation 
rules. Then, subjective scores SubjCrit1 and SubjCrit2 in each 
sentence are estimated with , as explained  ,Wm lSubjWordScore
in subsection II.1. In contrast, subjective score SubjCrit3, 
which corresponds to the first impression, is determined by 
asking the English language experts to give their opinions after 
listening to each sentence only once. The interannotator 
correlation is equal to 0.65.

V. Discussion 

Tables 3 through 5 show the subjective-objective score 
correlation versus threshold min

PVD , defined in part B of 
subsection III.1. As explained above, min

PVD defines a minimum 
distance threshold between the target pronunciation and the 
phonetic variance due to the fact that the ASR technology 
accuracy imposes a higher bound for discrimination ability. 
Competitive class Classm,l in (6) is composed of the target 
pronunciation of Wm,l, competitive lexicon CLm,l, and phonetic 
variant PVm,l. The phonetic variant included in Classm,l is the 
one that gives the highest subjective-objective score correlation 
and is chosen among and  

and are estimated 
according to SubjCrit2 and ObjMetrComb2, SubjCrit1 and 
ObjMetrComb1, and SubjCrit3 and ObjMetrComb3. 

1 ,m,lPV 2 ,m,lPV 3 ,m,lPV 4
m,lPV .

SmSubjSentenceScore SmObjSentenceScore

As shown in Table 3, CLm,l is generated with MNCW   
equal to 5, min max8  25 ,CL CLD ; D⎡ ⎤= =⎣ ⎦  and { }3

m,l m,lPV PV .=   
and are estimated 

according to SubjCrit2 in (2) and ObjMetrComb2 in (4), 
respectively. According to Table 3, the maximum subjective-  

SmSubjSentenceScore SmObjSentenceScore
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Table 3. Subjective-objective score correlation vs. threshold min
PVD . 

CLm,l is generated with MNCW=5, min[   8CLD =
max 25],CLD = and { }3

m,l m,lPV PV .= SmSubjSentenceScore
and SmObjSentenceScore are estimated according to 
SubjCrit2 and ObjMetrComb2. 

;

MCS 
min
PVD  

Mean rule MVR 
0 0.45 (0.1736) 0.48 (0.2207) 

1 0.5 0.52 

2 0.47 (0.2843) 0.49 (0.281) 

3 0.46 (0.2266) 0.47 (0.1685) 

4 0.43 (0.0968) 0.45 (0.0918) 

Table 4. Subjective-objective score correlation vs. threshold min
PVD .

CLm,l is generated with MNCW=10, min[ 8CLD =
max 25]CLD = and { }1

m,l m,lPV PV .= SmSubjSentenceScore
and SmObjSentenceScore were estimated according to 
SubjCrit1 and ObjMetrComb1. 

;

MCS 
min
PVD  

Mean rule MVR 
0 0.5 (0.2776) 0.49 (0.2177) 

2.5 0.49 (0.2177) 0.5 (0.2776) 

5 0.53 0.53 

7.5 0.52 (0.4207) 0.53 (0.5) 

10 0.51 (0.3446) 0.5 (0.2776) 

 
 

objective score correlation is achieved when  with 
the MCS mean and MVR. The statistical significances of the 
difference with respect to the highest subjective-objective score 
correlation are presented in parentheses. 

min 1PVD =

min
PVD  can introduce 

increases of 11.1% and 8.3% in the subjective-objective score 
correlation with MCS mean rule and MVR, respectively, when 
results are compared with the case in which no threshold is 
applied, that is, . min 0PVD =

As shown in Table 4, and 
are estimated according to SubjCrit1 in 

(1) and ObjMetrComb1 in (3). Competitive lexicon CL

SmSubjSentenceScore
SmObjSentenceScore

m,l in (6) 
is obtained with MNCW equal to 10, , 
as explained in part A of subsection III.1, and

min[ 8; max 25]CLD =

Table 5. Subjective-objective score correlation vs. threshold min
PVD . 

CLm,l is generated with MNCW=15, min[ 8CLD =
max 25],CLD = and { }4

m,l m,lPV PV= . SmSubjSentenceScore
and SmObjSentenceScore are estimated according to 
SubjCrit3 and ObjMetrComb3. 

;

MCS 
min
PVD  

Mean rule MVR 
0 0.52 0.53 

1 0.46 (0.1251) 0.48 (0.166) 

2 0.43 (0.0455) 0.43 (0.0294) 

3 0.4 (0.0136) 0.42 (0.0197) 

4 0.4 (0.0136) 0.41 (0.0125) 

 
 

As shown in Table 5, and 
are estimated according to SubjCrit3 as 

defined in subsection II.1 and ObjMetrComb3 as defined in (5). 
Competitive lexicon CL

SmSubjSentenceScore
SmObjSentenceScore

m,l in (6) is obtained with MNCW equal 
to 10 and min max8  25CL CLD ; D⎡ ⎤= =⎣ ⎦ , as explained in part A of 
subsection III.1. Phonetic variant PVm,l is made equal to . 
The statistical significances of the differences with respect to 
the highest subjective-objective score correlation are presented 
in parentheses. As shown in Table 5, the maximum subjective-
objective score correlation is achieved when  with 
the MCS mean rule and MVR. 

4
m,lPV

0PV
minD =

In Table 6, each subjective criterion is modeled with 
ObjMetrComb1, ObjMetrComb2, and ObjMetrComb3 by 
using MCS MVR. As can be seen in Table 6, SubjCrit1 and 
SubjCrit2 can be modeled more accurately with 
ObjMetrComb1 and ObjMetrComb2, respectively. The 
subjective-objective correlation obtained by employing 
SubjCrit3/ObjMetrComb3 is high and comparable with those 
achieved with SubjCrit1/ObjMetrComb1 and SubjCrit2/ 
ObjMetrComb2. However, the highest subjective-objective 
score correlation in the SubjCrit3 column is achieved with 
ObjMetric2 instead of ObjMetric3, as shown in Table 6. This 
result suggests that the first impression criterion may employ 
an averaging procedure of word-based pronunciation 
assessment. This result could also be due to the fact that the 
average word-based objective score is a more robust estimation 
than the statistic mode or most frequent word score within the 
target sentence. The statistical significances of the differences 
with respect to the highest subjective-objective score 
correlation in each column are presented in parentheses. A 
similar result is obtained by replacing MVR with the mean rule 
as the MCS method. 

CLD =
{ }1

m,l m,lPV PV .=  
The statistical significances of the differences with respect to 
the highest subjective-objective score correlation are presented 
in parentheses. Table 4 shows that min

PVD  can introduce 
increases of 6.0% and 6.1% in the subjective-objective score 
correlation with MCS mean rule and MVR, respectively, when 
results are compared with the case in which no threshold is 
applied, that is, . min 0PVD =

As mentioned above, the competitive lexicon and the 
phonetic variants are generated by employing an acoustic-
phonetic criterion only. Consequently, the syntactic structure of  

96   Néstor Becerra Yoma et al. ETRI Journal, Volume 35, Number 1, February 2013 



Table 6. Subjective-objective score correlation with MCS MVR.
Each subjective criterion is modeled with
ObjMetrComb1, ObjMetrComb2, and ObjMetrComb3.

MCS MVR SubjCrit 1 SubjCrit 2 SubjCrit 3 

ObjMetrComb 1 0.53 0.29 (0) 0.29 (0) 

ObjMetrComb 2 0.51 (0.3483) 0.52 0.57 

ObjMetrComb 3 0.27 (0) 0.44 (0.0708) 0.53 (0.209)

Table 7. Subjective-objective score correlation published
elsewhere with similar tasks. 

Ref. 
Average obj-subj correlation 

(no. of score levels) 
Interannotator 

correlation 

[3] 0.453 (5 levels) 0.65 

[4] 0.58 (5 levels) 0.65 

[12] 0.4913 (5 levels) 0.61 

[13] 0.521 (5 levels) 0.65 

[14] 0.642(5 levels) 0.65 

[15] 0.415 (10 levels) 0.593 

 

 
the target sentence is not taken into consideration in the task 
addressed here. 

Finally, Table 7 shows results achieved by other authors with 
similar tasks. When compared with the methods in Table 7, the 
proposed technique leads to similar results but shows the 
following advantages: It offers the possibility to define more 
than one criterion to combine word scores and emulate 
subjective criteria; It does not require a priori studies of 
common mistakes; It does not require controlled environments 
nor high quality microphones. 

VI. Conclusion 

This paper proposed that the problem of sentence-based 
pronunciation evaluation tasks should be defined in the context 
of subjective criteria. Three subjective criteria (that is, the 
minimum subjective word score, the mean subjective word 
score, and first impression) were proposed for the 
pronunciation evaluation of sentences and modeled based on 
the combination of word-based assessment. Then, the 
subjective criteria were approximated with objective sentence 
pronunciation scores obtained with the combination of word-
based metrics. As the proposed method does not need a priori 
studies of common mistakes, class-based language models 
were used to incorporate the student’s native and target 
language phonetic rules to represent incorrect and correct 
pronunciations. Incorrect pronunciations were automatically 
generated by incorporating a competitive lexicon and applying 

students’ native and target language phonetic rules, applicable 
to any 2LL context. 

The results presented here suggest that subjective-objective 
sentence score correlations greater than or equal to 0.5 can be 
achieved when the proposed sentence-based pronunciation 
criteria are approximated with the combination of word-based 
scores. By considering that the interannotator correlation is 
0.65, the achieved subjective-objective sentence score 
correlations can be interpreted as very positive results. 
Particularly, it is worth emphasizing that the minimum 
subjective word score, the mean subjective word score, and the 
first impression can effectively be emulated with the lowest 
word objective score within the target sentence, the average 
word-based objective score, and the statistic mode or most 
frequent word score in the utterance, respectively. This result is 
especially interesting to emulate more than one subjective 
criterion in pronunciation evaluation. 

The subjective-objective sentence score correlations 
achieved here are very comparable with those published 
elsewhere with a priori studies of pronunciation errors. As a 
consequence, the integration of new target sentences with the 
ASR-based pronunciation quality evaluation technology is 
more efficient and requires less human assistance with the 
approach proposed in this paper. Improving the discrimination 
ability provided by ASR-based technology between correct and 
incorrect pronunciations, proposing more accurate models for 
the subjective first impression criteria, and proposing new 
subjective criterion (for example, semantic) are proposed for 
future research. 
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