
For real-time interactive multimedia operations, such as
video uploading, video play, fast-forward, and fast-rewind,
solid state disk (SSD)-based storage systems for video
streaming servers are becoming more important. Random
access rates in storage systems increase significantly with
the number of users; it is thus difficult to simultaneously
serve many users with HDD-based storage systems, which
have low random access performance. Because there is no
mechanical operation in NAND flash-based SSDs, they
outperform HDDs in terms of flexible random access
operation. In addition, due to the multichannel
architecture of SSDs, they perform similarly to HDDs in
terms of sequential access. In this paper, we propose a new
SSD-based storage system for interactive media servers.
Based on the proposed method, it is possible to maximize
the channel utilization of the SSD’s multichannel
architecture. Accordingly, we can improve the
performance of SSD-based storage systems for interactive
media operations.

Keywords: Video streaming service, interactive media
service, media server, media storage system.

Manuscript received Nov. 18, 2011; revised Aug. 13, 2012; accepted Aug. 22, 2012.
This work was supported by the ETRI R&D Program of KCC (Korea Communications

Commission), Korea [11921-03001, “Development of Beyond Smart TV Technology”].
Yo-Won Jeong (kaiforce@naver.com) was with the Department of Electrical Engineering,

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Rep. of Korea, and is
currently with the Samsung Electronics Corporation, Suwon, Rep. of Korea.

Youngwoo Park (lucky.park@gmail.com) is with the Hyundai Motor Company, Seoul, Rep.
of Korea.

Kwang-deok Seo (corresponding author, kdseo@yonsei.ac.kr) is with the Computer and
Telecommunications Engineering Division, Yonsei University, Gangwon, Rep. of Korea.

Jeong Ju Yoo (jjyoo@etri.re.kr) is with the Broadcasting and Telecommunications Media
Research Laboratory, ETRI, Daejeon, Rep. of Korea.

Kyu Ho Park (kpark@ee.kaist.ac.kr) is with the Department of Electrical Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.13.0111.0715

I. Introduction

The recent growth of communication and multimedia
computing technologies has led to a huge demand on servers,
which must support an increasingly wide range of interactive
media services for user created content (UCC), education, and
entertainment.

Conventional interactive operations include play, pause, and
stop functions. However, modern interactive media servers
must include additional operations, as described below. First,
the media server must have high performance for the many
user-based write requests to upload UCC. Second, the media
server must support such VCR-like services as fast-forward
and fast-rewind at multiple speeds [1]. These VCR-like
services are the most important features because the fast-
forward and fast-rewind are the operations that are most
frequently used aside from the play and stop operations. Third,
the variety of user devices (such as a high performance PC,
notebook, or mobile phone) demands a video scalability
service. These operations could be efficiently realized through
such multilayer video coding as scalable video coding (SVC)
[2]. However, because of high encoding overhead and the
implementation complexity of SVC, SVC technologies have
not yet been widely deployed in related industries. It is thus
difficult to fully support all the scalability modes of SVC, such
as spatial, quality, and temporal scalability. For this reason, this
paper focuses on the interactive media servers that store such
single-layer video streams as H.264 video consisting of I-, P-,
and B-frames.

Single-layer video streams can support such interactive
services as multilevel fast-forward, fast-rewind, and scalability
by alternately skipping and delivering video frames [3]. Figure
1 shows an example of the approach. The play level indicates

An SSD-Based Storage System for an Interactive
Media Server Using Video Frame Grouping

 Yo-Won Jeong, Youngwoo Park, Kwang-deok Seo, Jeong Ju Yoo, and Kyu Ho Park

ETRI Journal, Volume 35, Number 1, February 2013 © 2013 Yo-Won Jeong et al. 69

Fig. 1. Example of diverse access patterns resulting from various
play levels.

...Play
Level 1

Skipping B-frames of even numbers

...

Skipping B-frames of odd numbers

...

Skipping all P-frames

...

Skipping I-frames of even numbers

...

I1 I2B1 B2 P1 B3 B4 P2 B5 B6 B9 P4 B12 P5 B13 B14 I3P3 B7 B8 P6 B15B16B10 B11

I1

I1 I2 P1 P2 P4 P5 I3 P3 P6

I1 I2 I3 I4 I5 I6

I1 I3 I5

Play
Level 2

Play
Level 3

Play
Level 4

Play
Level 5

B1 P1 B3 P2 B5 P3 B7 I2 B9 P4 B11 P5 B13 P6 B15 I3

...

...

the level of fast-forward, fast-rewind, or temporal scalability.
Specifically, Play Level 1 means the operation of playing all
video frames. If a client requests Play Level 2 or above, the
media server can support the requested play level by
transferring frames with a frame-skipping operation, as shown
in Fig. 1. Even with this skipping, the client can still play the
received video stream because of the interdependence
characteristics that exist among I-, P-, and B-frames [3]. This
method is not applicable to the spatial and quality scalabilities
but applicable to the temporal scalability and fast-forward/fast-
rewind services. Therefore, the target of this paper is to increase
the efficiency of the method of adjusting play levels to nicely
support the temporal scalability and fast-forward/fast-rewind
services.

Note that the spatial and quality scalabilities using single-
layer video streams can also be supported by storing multiple
single-layer video streams encoded at different bitrates and
resolutions for the same video title, which is a widely adopted
approach in the industry.

For video streaming services, real-time video delivery with
minimal delay is one of the most important considerations. If
the network is fast and stable, delay and real-time performance
are limited by server performance. However, the diverse media
access patterns mentioned in Fig. 1 for interactive media
operations lead to random access of a huge disk in the storage
devices of the server [3]. Particularly, as the level of play
increases, the random access rate also increases. The reason is
that the distance between physical regions on the disk, where
the frames to be accessed are stored, increases. It is thus
difficult to concurrently ensure minimal delay and fulfill real-
time requirements while serving many clients using HDD-
based servers, which have poor random access performance.

Meanwhile, flash memory has come to the forefront in
recent years, and flash memory-based solid state disks (SSDs)
are rapidly broadening their share of the storage market due to
the short random access time [4], [5]. While HDDs have low
performance for seek times and rotational latency due to their
mechanical limitations, SSDs have no mechanical
components; thus, the SSD has only low seek latency due to
the electronic components. Therefore, SSD-based video
streaming servers supporting interactive media operations
outperform their HDD-based counterparts.

In this paper, we propose a new SSD-based storage system
for interactive media servers. We first analyze the throughput
characteristics of random access for constant sizes of read
requests in SSDs. Based on these throughput characteristics,
we determine the request size that maximizes disk throughput
and guarantees that read and write requests always have that
size for all interactive operations based on the scheme of
separated frame buffers.

The remainder of this paper is organized as follows. In
section II, we review the backgrounds of interactive media
operations and the characteristics of flash-based SSDs. Based
on this review, we discuss critical design considerations of the
storage system for media streaming servers. In section III, we
describe the proposed method, which exploits the separated
frame buffers. In section IV, we show extensive experiment
results to validate the efficiency of the proposed method. We
then discuss the results and conclude our work in section V.

II. Related Works

1. Interactive Media Operations

The write operations among interactive media operations
always sequentially store entire video files to the server’s disks.
Thus, we do not need multiple levels for write operations,
unlike what is required for read operations.

Stored video files are typically compressed by video
compression standards, such as MPEG-x and H.26x. Generally,
these compression standards use three types of video frames:
intra-coded frame (I-frame), predictive-coded frame (P-frame),
and bidirectionally predictive-coded frame (B-frame). I-frames
are encoded independently and focus on removing
redundancies existing within a picture. P-frames are encoded
using predictions from the preceding I- or P-frame in the video
sequence. B-frames are encoded using predictions from the
preceding and succeeding I- or P-frames in the video sequence.
Encoded video typically repeats the pattern of I-, P-, and B-
frames, the so-called group of pictures (GOP), for the duration
of an individual video stream [6]. Figure 2 shows an example
of a GOP. The arrows indicate frame dependency relationships.

70 Yo-Won Jeong et al. ETRI Journal, Volume 35, Number 1, February 2013

Fig. 2. Dependency structure of frames in GOP.

I1 I2B1 B2 P1 B3 B4 P2 B5 B6 B9P3 B7 B8

GOP1 GOP2

...

According to these dependency relationships, even if B-frames
are skipped, we can decode all other frames. If we skip frames
to decode a P-frame, we cannot decode upcoming P- or B-
frames within the GOP. If we skip frames to decode an I-frame,
we cannot decode the entire GOP.

Because the media server does not need to read whole video
frames as its play level to minimize the data bandwidth of the
server, it can serve various play levels requested by skipping
(or jumping) the transfer of video frames. For example, in Fig.
1, Play Level 2 can be achieved by transferring frames while
skipping even-numbered B-frames. Even with this skipping,
the client can still play the stream because the skipped B-
frames do not affect any other frames according to the
dependency relationships among I-, P-, and B-frames. Play
Level 3 can be achieved by transferring frames while skipping
all even- and odd-numbered B-frames, and Play Level 4 can be
achieved by additionally skipping all P-frames. Next, we can
increase the play level by periodically skipping I-frames. By
using these jumping read operations, we can minimize the data
bandwidth of server disks and reduce the load on the server
disks. However, if video files are written to disks in encoding
order (which is a conventional way to store video files), the
jumping read operations result in huge amounts of random
access in the server disk [3]. It is thus difficult to
simultaneously provide video data in real-time, with minimal
delay, to many users using HDD-based servers.

To rectify this situation, some previous works proposed
efficient placement of video data to HDD-based storage systems
that support interactive media operations. We describe two
technically feasible approaches related to the proposed media
server design. Rangaswami and others [1] developed an
interactive media proxy that transforms noninteractive broadcast
or multicast streams into interactive ones. They carefully manage
the disk device by considering disk geometry for allocation and
by creating several stream files according to the various play
levels. However, this method demands high storage capacity, and
they did not consider additional write overhead.

Media synchronized RAID (MSR) [3] increases RAID disk
performance for media servers by supporting interactive
operations using the following two schemes. First, the authors
synchronize sizes of all encoded frames to a RAID stripe size.

Fig. 3. Placement algorithm on disk array in media-synchronized
RAID.

Disk no. 1 2 3 4 5 6 7

Video i

Video j

I
I
I
I

I
I
I
I

BB
BB
BB

BB

P
P
P

P

BB
BB
BB

BB

P
P
P

P

BB
BB
BB

BB

I
I
I
I

I
I
I
I

BB
BB
BB

BB

BB
BB
BB

BB

P
P
P

P

BB
BB
BB

BB

P
P
P

P

If the video streams that are composed of the stripe-sized
synchronized frames are written to the RAID disks, I-, P-, and
B-frames can be organized into the individual disks, as shown
in Fig. 3. To synchronize the frames to the stripe size, an
accurate bitrate control scheme was proposed [3]. Second, the
authors proposed a per-disk prefetching scheme to increase
disk performance. With these two schemes, MSR can increase
RAID disk performance. However, the MSR method yields
video quality degradation caused by fitting the number of bits
of each frame to a predetermined size. Another limitation is
that various types of video streams encoded with various
bitrates cannot be supported.

To overcome the limitations of the previous efforts, we
propose a scheme to group video frames by type to improve
the performance of SSD-based storage systems.

2. NAND-Flash-Based Solid State Disk

Unlike HDDs, because flash memory can quickly access
data regardless of physical location, SSDs can provide uniform
and fast random access speeds—this is a key advantage of
SSDs [7]. However, sustained read and write speeds for single
flash memory are much slower than those of HDD disks. To
compensate for that drawback, most SSDs employ a
multichannel and multiway architecture, as shown in Fig. 4 [8],
[9].

In this architecture, sequential write operations stripe the
buffered data into m channels to maximize the channel
utilization, as shown in Fig. 5. In each channel, because the
flash memory uses one data bus, data must be transferred over
the bus by time division. A pipeline scheme of the n-way
architecture is adopted to increase the parallelism [8].

According to the striping and pipelining scheme, in a
sequential write, data is spread over all flash memory with high
probability. We define the request size as the data size requested
from the host to the disk for a one-time read or write operation;
as the read request size increases, the probability that spread

ETRI Journal, Volume 35, Number 1, February 2013 Yo-Won Jeong et al. 71

Fig. 4. m-channel and n-way architecture of SSD.

Flash
memory

… Flash memory
controller

Flash memory
controller

Flash memory
controller

SRAM controller SRAMProcessor

Host interface

Host

SSD

n

m

Flash
memory

Flash
memory

Flash
memory

Flash
memory

Flash
memory

Flash
memory

Flash
memory

Flash
memory

×8m ×8m

×8m

×8 ×8 ×8

×8 ×8 ×8
×8

×8

×8

×8

×8

×8

×8

×8

×8

…

…

…

…

Fig. 5. General write operations in SSD.

Host interface

Write requests
from host

Striping to
multichannels

Buffering

NAND

NAND NAND NAND
NAND

NAND
NAND

…

Pi
pe

lin
in

g
to

m

ul
tiw

a y

data is simultaneously read from all flash memory increases.
Therefore, in read operations of SSD, the request size is the
most important factor affecting the read performance. To
analyze the characteristic difference between SSD and HDD,
we use the IOMeter benchmark program [10]. The benchmark
program is employed in an Intel Pentium D 3.2-GHz processor
with 2 GB of main memory. The operating system used in the
test is Windows 7. The benchmark results display read/write
throughput as a function of request size, as shown in Fig. 6. We
measure throughput for both sequential and random access. We
use two SSDs and one HDD storage device. SSD1
corresponds to Mtron MSD-SATA 3025 [11], SSD2
corresponds to Samsung MCBQE32G5MPPOVA [12], and
HDD corresponds to Seagate 7200.10 [13]. Their basic
specifications are summarized in Table 1.

As shown in Fig. 6, for data writing, sequential write

Table 1. Summary of specifications of sample SSDs and HDD.

Specifications SSD1 SSD2 HDD

Model name
Mtron

MSD-SATA
3025

Samsung
MCBQE32G

5MPP

Segate
7200.10

Interface S-ATA 2 S-ATA 2 S-ATA 2

Capacity 32 GB 32 GB 32 GB

Structure/type
4-ch., 4-way

SLC*
4-ch., 4-way

SLC*
7,200 rpm

Sustained
write speed 80 MB/s 80 MB/s NA

Sustained
read speed 100 MB/s 100 MB/s NA

 * SLC: Single level cell.

Fig. 6. Throughput measured by IOMeter benchmark program:
(a) write test and (b) read test.

0

20000

40000

60000

80000

100000

120000

SSD1 seq
SSD1 rand
SSD2 seq
SSD2 rand
HDD seq
HDD rand

0

20000

40000

60000

80000

100000

120000 SSD1 seq
SSD1 rand
SSD2 seq
SSD2 rand
HDD seq
HDD rand

Request size (bytes)

8K 16K 32K 64K 128K 256K 512K
Request size (bytes)

1M 2M 4M 8M

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

Th
ro

ug
hp

ut
 (K

B
/s

)
Th

ro
ug

hp
ut

 (K
B

/s
)

(a)

(b)

throughput is higher than that of random write for all storage
devices. For both SSD and HDD, sequential write throughput
becomes saturated for data request sizes in excess of 32 KB for
SSD1, 64 KB for HDD, and 128 KB in SSD2. These
saturation points mean that the system bus is fully operated
with its maximum bandwidth. For SSDs, the full bandwidth is
achieved by writing data to all flash memory in a fully parallel

72 Yo-Won Jeong et al. ETRI Journal, Volume 35, Number 1, February 2013

fashion to maximize channel utilization. For reading data,
throughput characteristics of SSD are markedly different from
those of HDD. The throughput gap between sequential and
random reads in SSD is smaller than in HDD, and only the
request size affects the read throughput. Random read
throughput becomes saturated for data request sizes in excess
of 256 KB for SSD1 and 512 KB for SSD2. At these request
sizes, we can maximize SSD channel utilization even if the
access patterns are all random.

With due consideration of the above results, we summarize
the following design strategies to increase the performance of
storage systems in terms of throughput [14], [15].

i) For HDD write and read operations, one must favor
sequential over random access as much as possible. If random
access is required, the data request size must be large (up to
several MB). However, the request size must be limited by the
data size being read.

ii) For SSD write operations, similar to HDDs, one must favor
sequential over random access as much as possible. If random
access is required, the data request size must be made large.

iii) For SSD read operations, unlike for HDDs, differences in
throughput between random and sequential operations are
negligible when the throughput is saturated. An important
consideration in terms of maximum throughput is the read
request size to obtain saturated throughput.

III. Proposed Placement Method

1. Proposed Method with Separated Buffers

If we increase the request size to the throughput saturation
point, we can maximize read throughput performance. To
maintain that request size for all play levels, we must gather
video frames according to type by replacing the video
sequence data in video write operations.

Figure 7 outlines the basic concept of the proposed storing
method. When encoding video streams, we separate encoded
video frames based on frame type. For B-frames, we further
separate frames according to their frame numbers (odd/even)
because the play level can be distinguished by skipping either
even B-frames or both even and odd B-frames. For I-frames,
we also further separate frames according to their frame
numbers (odd/even). Then, the play level using both even and
odd I-frames and the play level using only odd I-frames can be
distinguished. Therefore, five separated buffers are needed as
shown in Fig. 7. All buffers have the same size (S). Whenever
the size of data in one of the five buffers reaches S, the data of
the occupied buffer is sequentially written to the SSD, and the
sequential write pattern is thus preserved. Because the write
request size is always the same as the buffer size, we can

Fig. 7. Basic concept of proposed placement method.

Block of
size S

Separated buffers
with identical size S

An example of block order in a video file

Separation as
frame types

P block

P block

Metadata
information

Metadata block

Write back if full

Encoding order

SSD

Meta
data

I1 B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8 I2 B9 B10 P4 B11 B12 P5 B13 B14 P6 aa B16

IODD IEVEN P BODD BEVEN

Bodd block
Beven block
Iodd block
Ieven block

P block
Iodd block
Ieven block
Bodd block
Beven block

…

P1, P2,…, P6
(partial)

B1, B3,…, B23
(partial)

B2, B4,…, B24
I1, I3

(partial)
I2, I4

(partial)
P6

(partial), P7,…, P12
(partial)

I3
(partial), I5, I7

(partial)
I4

(partial), I6, I8
(partial)

B23
(partial), B25,…, B47

(partial)

B26, B28,…, B48
(partial)

P12
(partial), P13,…, P18

(partial)

achieve the maximum disk bandwidth if we select a buffer size
larger than the request size of the saturation point in Fig. 6. We
distinguish data blocks to be written according to frame type as
follows: Iodd block, Ieven block, P-block, Bodd block, and BBeven
block. Because the frame sizes can change, the last frame of
each block might be fragmented. In Fig. 7, the written order of
blocks and frames included in each block are examples of
video content. The first P-block has full P-frames from P1 to P5
and the start of a fragmented P6-frame. The end of the P6-frame
is placed in the next P-block. If the video ends before a buffer is
full, we pad the buffer with zeros and write the data to the SSD.
The proposed method guarantees that the read and write
request sizes are always the same as the buffer size. For
example, for Play Level 2, we need all the I- and P-frames and
odd-numbered B-frames. Because the proposed method writes
frames of the same type together to a block, as shown in Fig. 7,
we can obtain necessary frames by reading Iodd blocks, Ieven
blocks, P-blocks, and Bodd blocks. For Play Level 5, we need
only odd-numbered I-frames. We can obtain these frames by
reading only Iodd blocks. For all play levels, because the request
unit is always a block, all the request sizes are S. We next
determine the buffer size S that maximizes the throughput.

2. Determining Sizes of Separated Buffers

There are two considerations for determining buffer size.

ETRI Journal, Volume 35, Number 1, February 2013 Yo-Won Jeong et al. 73

First, we must determine a buffer size that maximizes SSD
throughput. Recall that, with the proposed method, write access
patterns are always sequential, and read access patterns are
always random position requests of the same size. With these
access patterns, throughput increases as the buffer size
increases up to a saturation point at which channel utilization is
maximized (as described in subsection II.2). Therefore, we
should set the buffer size such that channel utilization is
maximized for both read and write operations. However,
because the channel utilization algorithms of commercially
available SSDs are generally undisclosed, we must determine
the buffer size through experiments. Second, we must consider
drawbacks associated with a large buffer size. As buffer size
increases, play start time delay also increases. For example, if a
user requests to start Play Level 1, the server must read all
types of blocks (Iodd block, Ieven block, P-block, Bodd block, and
BBeven block) at least once. In addition, with the increased buffer
size, the frequency of reading irrelevant data also increases. For
example, assume that I1, I3, and I5 frames are written together
into an Iodd block. Even if a user requests only the I1 frame, we
must read the entire Iodd block, which includes I1, I3, and I5
frames. In this case, if the user stops playback before the I3
frame is reached, the I3 and I5 frames that have already been
read may not be needed. This problem can be applied to other
types of frames. We must therefore determine an efficient
buffer size that considers both SSD throughput and avoids
potentially useless data reads.

To determine the efficient buffer size, we experimentally
measure the write throughput and the read throughput as a
function of buffer size. The experiment is set up as follows. For
the write test, we assume that a number of users write their own
video streams to the SSD using the proposed method. The total
play times of written videos are randomly set from 5 to 20
minutes. For the read test, we assume that a number of users
requested Play Level 4 (read all I-frames only) from their own
video streams stored in SSD from the start to end frames. The
read request sizes are the same as the buffer size used for write
operations.

The experiment results are shown in Figs. 8 and 9. Figure 8
shows write throughput as a function of the size of separated
buffers ranging from 8 KB to 4 MB for two types of SSDs and
an HDD. For the large enough buffer sizes (approximately
128 KB) shown in that figure, SSD throughput saturates. Even
if the buffer size exceeds this saturation point, throughput
hardly increases because the maximum channel utilization is
achieved. Due to the poor random access performance of the
HDD, its throughput approaches the saturated throughput of
SDD2 at a buffer size of several MB.

Figure 9 shows read throughput as a function of buffer size
ranging from 8 KB to 4 MB for two types of SSDs and an

Fig. 8. Write throughput as function of buffer size for two types
of SSDs and HDD.

0

20000

40000

60000

80000

Buffer size (bytes)

SSD1
SSD2
HDD

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Th
ro

ug
hp

ut
 (K

B
/s

)

Fig. 9. Read throughput as function of buffer size for two types
of SSDs and HD for Play Level 4.

0

Buffer size (bytes)
8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

20000

40000

60000

80000

100000

120000

SSD1
SSD2
HDD

Th
ro

ug
hp

ut
 (K

B
/s

)

HDD. As buffer size increases, the throughput increases and
saturates for large buffer sizes. Even if the SSD1 and SSD2
specifications are similar, their read throughput characteristics
are quite different. SSD2 throughput for small read requests is
lower than that of SSD1. However, as the buffer size becomes
larger, the increment of the throughput of SSD2 is greater than
that of SSD1, and the saturated throughput of SSD2 is also
higher. Throughput saturation starts at buffer sizes of around
128 KB for SSD1 and 256 KB for SSD2. Similar to the write
requests case, channel utilization is maximized for read
requests in excess of these saturation points. Thus, the
throughput hardly increases. Due to the poor random access
performance of the HDD, its throughput approaches the
saturated throughput of SSD2 at a buffer size of several MB.
The above analysis focuses on the case of Play Level 4. Similar
read and write throughput characteristics could also be
observed for other play levels.

Based on the above results, we set the separated buffer size
to be 128 KB and 256 KB for SSD1 and SSD2, respectively.
Even if the buffer size increases beyond 128 KB (for SSD1) or
256 KB (for SSD2), there is hardly an increase in the read
throughput and the write throughput. The performance is rather

74 Yo-Won Jeong et al. ETRI Journal, Volume 35, Number 1, February 2013

degraded by unnecessary reads. If we apply the proposed
method to the HDD and want to obtain the same performance
as that of the SSDs, we must set the size of separated buffers to
be at least 4 MB, which results in that much more memory
space being required than in SSD cases, and unnecessary reads
increase.

3. Proposed Metadata Structure

The proposed method does not write video data in its
encoding order. We must tailor the metadata structure to allow
for fast searching of requested frames in the streaming file. We
propose the following method for efficient metadata writing:
whenever a frame block is written to the SSD, its metadata
information is stored in another buffer whose size is also S, as
shown in Fig. 7. If the metadata buffer is full, the metadata in
the buffer is flushed to the SSD. If the video data ends before
the metadata buffer is full, we pad the metadata with zeroes to
the full buffer size and flush it to the SSD. The reason to write
with a constant buffer size unit (instead of writing the complete
metadata at one time) is that the total size of the proposed
metadata can increase with the number of frames of video. For
example, if a video file contains two-hour, 30-fps content, its
total metadata size is about 1.2 MB (=30 fps × 2 hours × 3,600
seconds × 6 bytes per frame). If many users request several
hundred video files, the metadata is read frequently from the
disk because it is too large to hold all metadata in memory. By
making the buffer size of the metadata the same as the frame
buffers, we can always maintain the read and write request
sizes of the disk access at a constant value.

Figure 10 shows the proposed metadata structure. Each
value in the table corresponds to the placement shown in Fig. 7.
In Fig. 10, the “block number” denotes the written order. The
position of a block in the stream file can be found by
multiplying its block number by S. Content information is split
(and written) into five categories: frame type, start frame index,
number of frames, fragment, and link offset. Each frame has its
own frame index that indicates the encoding order. We count
the frame index for each individual frame type. For example,
the frame indices of the first I-, P-, and B-frames are all 1, and
the frame indices of the second I-, P-, and B-frames are all 2,
and so on. The start frame index in the metadata indicates the
frame index of the start frame of the current block. The number
of frames is the number of frames included in the block, and
the fragment bit identifies whether or not the last frame is
fragmented. For example, according to Fig. 7, the first P-block
(whose block number is 0) has full P-frames from P1 to P5 and
the head of the fragmented P6-frame. Therefore, frame type,
start frame index, number of frames, and fragment value are set
to P, 1, 6, and 1, respectively, as shown in Fig. 10. The link

Fig. 10. Proposed metadata structure.

Block
no.

Frame
type

Start frame
index

No. of
frames

Fragment

0
1
2
3
4
5
6
7

P 1
1
2
1
2
6
3
4

6
11
12
2
2
7
3
3

1
1
0
1
1
1
1
1

Block no.

16 bits

Frame
type
3 bits

Start frame index

18 bits

No. of
frames
5 bits

Frag-
ment
1 bit

Total
6 bytes

Link
offset

5
7
8
3
3
4
5
5

Link
offset
5 bits

BODD

BEVEN

IODD

IEVEN

P
IODD

IEVEN

…

…

…

…

…

…

Fig. 11. Separated buffer size variance for two types of mixed
media operation services.

... ...

0
1
2
3
4
5
6
7
8
9
10

1
1
2
1
2
6
3
4
23
12
26

1
1
0
1
1
1
1
1
1
1
1

Play Level 3
Necessary frames:
I4, I5, I6, …
P13, P14, P15, …

Block
no.

Frame
type Fragment Link

offset
6
11
12
2
2
7
3
3
11
6
11

5
7
8
3
3
4
5
5
6
4
6

Start frame
index

No. of
frames

P10 I4 B33 B34 P13 B35 B27 B28 P11 B29 B30 P12 B31 B32 B36 P14 B37 B38 P15 B39 B40

P
BODD

BEVEN

IODD

IEVEN

P
IODD

IEVEN

BODD

P
BEVEN

…

…

…

…

…

…

Ju
m

p
by

 li
nk

 o
ffs

et

offset in the metadata is employed for fast searching. It records
the distance between the number (or index) of the current block
and the number of the next block that has frames of the same
type as the current block. From Fig. 10, because the block
number of the first P-block is 0 and the block number of the
second P-block is 5, the link offset of the metadata of the first
P-block is 5 (= 5–0). Similarly, because the block number of
the first Iodd block is 3 and the block number of the second Iodd
block is 6, the link offset of the metadata of the first Iodd block is
3 (= 6–3). Because there is a high probability (for any play
level) that the same type of blocks are read within a short time
period, the link offset information helps to search the necessary
blocks quickly.

As shown in Fig. 11, if we assume that a user requests Play
Level 3 from P13, then, to satisfy the user’s request, we need all

ETRI Journal, Volume 35, Number 1, February 2013 Yo-Won Jeong et al. 75

I-frames from I4 and all P-frames from P13 because the
decoding of P13 is dependent on I4. In the metadata of Fig. 11,
the 0-th block is the first P-block. This block does not include
P13, so we must find the next P-block by using the link offset.
According to the link offset of the first P-block, we can
determine that the block number of the second P block is 5.
This block includes P13, so we must read it. Subsequent
P-blocks can be found by the link offset of their previous
P-blocks. In the same way, we can find Ieven and Iodd blocks as
needed. We set the size of the metadata of each block to 6 bytes
and allocate bits to each field, as shown in Fig. 10. This
allocation strategy allows us to represent video streams that
have 216 blocks and 218 B-frames because the bit lengths of the
block number and the start frame index are 16 bits and 18 bits,
respectively. For example, if the block size is 128 KB, the
frame rate is 30 fps, and the GOP structure is IBBPBBP…,
216 blocks implies about 8 GB (= 216 × 128 KB) of video data,
and 218 B-frames implies 3.5 hours (= 218 × 3/2 frames / 30 fps /
3,600 seconds) of running time. If we want to support a video
with a longer running time, we can increase the length of the
start frame index 18 bits to 26 bits (then the metadata size
becomes 7 bytes). This one-byte increment is negligible
relative to the video data size.

IV. Experiment Results

We perform various experiments to evaluate the
performance of the proposed placement method. The number
of simultaneous users is set to 20, 50, and 80. Each user is
allowed to write or to read from an individual file. The pseudo
code for the thread of data writing is as follows:

fd_ssdwr =

 open(video_file_name,O_RDWR|O_CREAT|O_DIRECT);

while(1) {

if(buffer_fill>=PROP_ORWR_SIZE)

wr_res =

write(fd_ssdwr, buffer_data, PROP_ORWR_SIZE);

}

We use the O_DIRECT option of Linux to open a video file.
Generally, for an application’s write request, the Linux file
system does not write the data immediately but gathers several
requests and writes one time, which leads to changing the
request size transferred to the disk. By using the O_DIRECT
option, we can prevent the file system from changing the
request size at write operations. If a buffer is filled with more
than a predefined size (PROP_ORWR_SIZE), we flush the
buffer’s data of that size. Video files are encoded using
H.264/AVC [16], [17] with a 2-Mbps bitrate and a 30-fps
frame rate. The GOP pattern is set as IBBPBBPBBPBB...PBB...,
and the number of frames in one GOP is 90 (corresponding

Fig. 12. Throughput as function of separated buffer size for two
types of mixed media operation services.

0

20000

40000

60000

80000

100000

0

20000

40000

60000

80000

100000

SSD1
SSD2

SSD1
SSD2

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Buffer size (bytes)

Buffer size (bytes)

(a) Proportion of write, Play Levels 1, 2, 3, 4, and 5 is
0.1:0.5:0.1:0.1:0.1:0.1.

(b) Proportion of write, Play Levels 1, 2, 3, 4, and 5 is
0.1:0.3:0.15:0.15:0.15:0.15.

Th
ro

ug
hp

ut
 (K

B
/s

)
Th

ro
ug

hp
ut

 (K
B

/s
)

to three seconds).

In the experiment, we compare the proposed method as
described in the previous section with a conventional method
that places video stream data in its play order of Play Level 1.
For the comparison, we measure the total throughput of the
disk, which is defined as the total read and write data rate of a
disk to serve all user requests. When many clients try to access
video data, it is difficult for the server to guarantee real-time
service for all clients because of the disk bottleneck. The higher
the total throughput of disks, the greater the number of clients
for whom real-time service can be guaranteed.

We analyze the obtained results by the following three steps:
i) First, we examine total throughput as a function of

separated buffer size for mixed media operation services; this
allows us to determine the optimal buffer size for maximum
throughput;

ii) Second, we examine the total throughput as a function of
the number of users for some individual media operations; we
compare the proposed method with a conventional one; in this
experiment, we can clearly identify the strong and weak points
of the proposed method for different play levels;

iii) Third, we examine the total throughput as a function of
the number of users for mixed media operation services.

76 Yo-Won Jeong et al. ETRI Journal, Volume 35, Number 1, February 2013

Fig. 13. Throughput for various media operation services: write
and Play Levels 1, 3, and 5.

100000

80000

60000

40000

20000

0

Th
ro

ug
hp

ut
 (K

B
/s

) 100000

80000

60000

40000

20000

0
Th

ro
ug

hp
ut

 (K
B

/s
)

0 20 40 60 80 0 20 40 60 80

100000

80000

60000

40000

20000

0

Th
ro

ug
hp

ut
 (K

B
/s

) 100000

80000

60000

40000

20000

0

Th
ro

ug
hp

ut
 (K

B
/s

)

0 20 40 60 80 0 20 40 60 80

Number of users Number of users

Number of users Number of users

Write Play Level 1

Play Level 3 Play Level 5

(a) SSD1

100000

80000

60000

40000

20000

0

Th
ro

ug
hp

ut
 (K

B
/s

) 100000

80000

60000

40000

20000

0

Th
ro

ug
hp

ut
 (K

B
/s

)

0 20 40 60 80 0 20 40 60 80

100000

80000

60000

40000

20000

0

Th
ro

ug
hp

ut
 (K

B
/s

) 100000

80000

60000

40000

20000

0

Th
ro

ug
hp

ut
 (K

B
/s

)

0 20 40 60 80 0 20 40 60 80

Number of users Number of users

Number of users Number of users

Write

Play Level 1

Play Level 3 Play Level 5

(b) SSD2

Conventional method
Proposed method

Figure 12 shows total throughput as a function of separated
buffer size for two types of mixed media operations. The types
of mixed media operations are determined by the proportions
of media operations requested by clients. In the first type, we
assume the request ratio for write and Play Levels 1, 2, 3, 4,
and 5 to be 0.1 : 0.5 : 0.1 : 0.1 : 0.1 : 0.1. In the second type, we
assume the request ratio for write and Play Levels 1, 2, 3, 4,
and 5 to be 0.1 : 0.3 : 0.15 : 0.15 : 0.15 : 0.15. In each case, we
increase the buffer size from 8 KB to 4 MB. Throughput
increases with buffer size as channel utilization increases.
However, throughput suffers somewhat in the case of a large
buffer size as the frequency of irrelevant data read increases.
Maximum performance is obtained for buffer sizes of 128 KB
and 256 KB for SSD1 and SSD2, respectively, as shown in Fig.
12.

Figure 13 shows the measurement results of the total
throughput for individual media operation services. For write
operations, the size of the five separated buffers in the proposed

Fig. 14. Throughput for mixed media operation services: write
and Play Levels 1, 2, 3, 4, and 5.

0

20000

40000

60000

80000

100000

0 20 40 60 80

SSD conv.
SSD prop.
HDD conv.
HDD prop.

0

20000

40000

60000

80000

100000

Number of users

SSD conv.

SSD prop.

(b) SSD2

W:P1:P2:P3:P4:P5=
0.1:0.5:0.1:0.1:0.1:0.1

W:P1:P2:P3:P4:P5=
0.1:0.5:0.1:0.1:0.1:0.1

W:P1:P2:P3:P4:P5=
0.1:0.3:0.15:0.15:0.15:0.15

W:P1:P2:P3:P4:P5=
0.1:0.3:0.15:0.15:0.15:0.15

Th
ro

ug
hp

ut
 (K

B
/s

)

Th
ro

ug
hp

ut
 (K

B
/s

)

SSD conv.
SSD prop.
HDD conv
HDD prop.

0 20 40 60 80
Number of users

(a) SSD1 vs HDD

0

20000

40000

60000

80000

100000

0 20 40 60 80
Number of users

Th
ro

ug
hp

ut
 (K

B
/s

)

SSD conv.

SSD prop.
0

20000

40000

60000

80000

100000

0 20 40 60 80
Number of users

Th
ro

ug
hp

ut
 (K

B
/s

)

method is set to 128 KB and 256 KB for SSD1 and SSD2,
respectively. The size of the single buffer in the conventional
method is 640 KB and 1,280 KB for SSD1 and SSD2,
respectively.

As the examination in this work shows, the write throughput
of the proposed method is similar to that of the conventional
method because the write throughput does not significantly
increase with the requested data size if this size exceeds 64 KB
for SSD1 or 128 KB for SSD2, as shown in Fig. 8.

For Play Levels 1, 3, and 5, the read request sizes for both
the proposed and conventional methods are the same as the
size of the separated buffers. The service time of each media
operation is five minutes. For Play Level 1, the throughput of
the proposed method is slightly lower than that of the
conventional method because of prefetching of unneeded data
when the user stops play. The proposed method results in a
greater amount of this data than the conventional method.
However, as the service time of each media operation increases,
the throughput gap decreases. For increased play levels, the
proposed method significantly outperforms the conventional
method because, in the conventional method, the number of
dropped frames caused by skipping increases as the level of
play increases.

Figure 14 shows the total throughput for mixed media
operations. In this experiment, we show results for two cases.
For the first case, we set the request ratio for write and Play
Levels 1, 2, 3, 4, and 5 to be 0.1 : 0.5 : 0.1 : 0.1 : 0.1 : 0.1. For
the second case, we set the request ratio for write and Play

ETRI Journal, Volume 35, Number 1, February 2013 Yo-Won Jeong et al. 77

Levels 1, 2, 3, 4, and 5 to be 0.1 : 0.3 : 0.15 : 0.15 : 0.15 : 0.15.
Because the performance of the proposed method is slightly
degraded in Play Level 1 and increases as the level of play
increases, the proposed method shows much better
performance in the second case. For the second case with
SSD2, the throughput gain of the proposed method is more
than 34%. The proposed method therefore exhibits better
performance as the proportion of Play Levels 2 through 5
increases in the mixed media operations because the random
access rate of the disk increases. SSD2 outperforms SSD1 with
the proposed method because the saturated throughput of
SSD2 is higher than that of SSD1.

In addition, Fig. 14(a) shows the total throughput of HDD.
For HDD, we set the buffer size to 512 KB. The throughput of
the proposed method is higher than that of the conventional
method by 13% (case 1) and 11% (case 2). The proposed
method is more powerful in SSD than in HDD because SSD
achieves its maximum throughput with a much lower request
size than HDD.

V. Conclusion

In this paper, we proposed a new storage system to increase
the number of users who can be simultaneously served in real-
time interactive operations using SSD-based video streaming
storage systems. Support of real-time interactive media
operations, such as video uploading, video play, fast-forward,
and fast-rewind, for as many users as possible, is an important
issue. Considering that random access rates in storage systems
are increasing dramatically with the number of users, serving
multiple users simultaneously is difficult with conventional
HDD-based storage systems since they suffer from poor
random access performance. NAND flash-based SSD
outperforms HDD in terms of random access. Based on
throughput analysis, we determined a constant buffer size that
maximizes throughput. We then generated requests with that
size for all play levels. This constant request size was possible
because we gathered and wrote video frames as their types by
using the proposed placement method with separated buffers.
Extensive simulations showed that the proposed method can
significantly improve disk storage system throughput for
interactive media operations.

References

[1] R. Rangaswami et al., “Fine-Grained Device Management in an
Interactive Media Server,” IEEE Trans. Multimedia, vol. 5, no. 4,
Dec. 2003, pp. 558-569.

[2] J. Ohm, “Advances in Scalable Video Coding,” Proc. IEEE, vol.
93, no. 1, Jan. 2005, pp. 42-56.

[3] S. Lim, Y. Jeong, and K. Park, “Interactive Media Server with
Media Synchronized RAID Storage System,” Proc. NOSSDAV,
June 2005, pp. 177-182.

[4] E. Seo, S.Y. Park, and B. Urgaonkar, “Empirical Analysis on
Energy Efficiency of Flash-Based SSDs,” USENIX HotPower,
Dec. 2008.

[5] J. Yoon et al., “Chameleon: A High Performance Flash/FRAM
Hybrid Solid State Disk Architecture,” IEEE Computer
Architecture Lett., vol. 7, no. 1, Jan. 2008, pp. 17-20.

[6] H. Wu, M. Claypool, and R. Kinicki, “A Model for MPEG with
Forward Error Correction and TCP-Friendly Bandwidth,” Proc.
NOSSDAV, June 2003, pp. 122-130.

[7] S. Lee et al., “A Case for Flash Memory SSD in Enterprise
Database Applications,” Proc. ACM SIGMOD, June 2008, pp.
1075-1086.

[8] J. Kang et al., “A Multi-channel Architecture for High-
Performance NAND Flash-Based Storage System,” J. Syst.
Architecture, Sept. 2007, vol. 53, no. 9, pp. 644-658.

[9] S. Park, A Buffer Management Scheme for NAND Flash-Based
Storage System Using Multi-Channel Architecture, master’s
thesis, Korea Advanced Institute of Science and Technology,
Daejeon, Rep. of Korea, Dec. 2008.

[10] Iometer Project. Available: http://www.iometer.org/
[11] MTRON “Product Specification,” MSD-SATA3035, rev. 0.1,

Nov. 2007.
[12] Samsung SSD MCBQE32G5MPP Specification. Available:

http://discountechnology.com/Samsung-32GB-2-5-SSD-ATA-
Hard-Drive-MCBQE32G5MPP#specs

[13] Seagate Data Sheet, “Barracuda 7200.10,” Apr. 2007.
[14] N. Agrawal et al., “Design Tradeoffs for SSD Performance,” Proc.

USENIX Tech. Conf., June 2009.
[15] H. Kim et al., “Development Platforms for Flash Memory Solid

State Disks,” Proc. ISORC, 2008.
[16] ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC,

“Advanced Video Coding for Generic Audiovisual Services,”
May 2003.

[17] Joint Video Team (JVT), H.264/AVC Reference Software, version
JM 13.2. Available: http://iphome.hhi.de/suehring/tml/download/

Yo-Won Jeong received his BS in electronics
engineering in 2000 and his MS and PhD in
electrical engineering in 2002 and 2012,
respectively, all from the Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, Rep. of Korea. He is currently
working at Samsung Electronics as a senior

engineer. His research interests include video storage systems, video
compression, and transmission.

78 Yo-Won Jeong et al. ETRI Journal, Volume 35, Number 1, February 2013

Youngwoo Park received his BE, MS, and
PhD in the Division of Electrical Engineering
from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Rep. of
Korea, in 2004, 2006, and 2010, respectively.
He is currently working for Hyundai Motor
Company. His research interests include storage

systems, automotive software platforms, and embedded virtualization.

Kwang-deok Seo received his BS, MS, and
PhD in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, Rep. of Korea, in 1996,
1998, and 2002, respectively. From Aug. 2002
to Feb. 2005, he was with LG Electronics. Since
March 2005, he has been a faculty member in

the Computer and Telecommunications Engineering Division, Yonsei
University, Gangwon, Rep. of Korea, where he is an associate
professor. Since Sept. 2012, he has been a courtesy professor in the
School of Electrical and Computer Engineering at the University of
Florida, Gainesville, FL, USA. His current research interests include
digital video broadcasting, mobile IPTV, scalable video coding, and
protocol design for scalable video transport. He is a member of KICS,
KSBE, IEEE, and IEICE.

Jeong Ju Yoo received his BS and MS in
telecommunications in 1982 and 1984,
respectively, from Kwangwoon University,
Seoul, Rep. of Korea. He received his PhD in
computing science from Lancaster University,
Lancaster, England, UK, in 2001. Since 1984,
he has been a principal member of the technical

staff in the Next Generation Smart TV Research Department of ETRI,
Daejeon, Rep. of Korea. He was the head of the MPEG Korea
delegates from 2007 to 2009. He is currently the director of the Smart
TV Media Research Team at ETRI. His research interests are in the
areas of QoS, video coding, media streaming, and multiscreen service
technology of smart TVs.

Kyu Ho Park received his BS in electronics
engineering from Seoul National University,
Seoul, Rep. of Korea in 1973, his MS in
electrical engineering from the Korea Advanced
Institute of Science and Technology (KAIST) in
1975, and his Dr-Ing in electrical engineering
from the Université de Paris XI, Orsay, France,

in 1983. He has been a professor in the Department of EECS, KAIST,
since 1983. He was the president of the Korea Institute of Next
Generation Computing from 2005 to 2006. His research interests
include computer architecture, file systems, storage systems, ubiquitous

computing, and parallel processing. Dr. Park is a member of KISS,
KITE, the Korea Institute of Next Generation Computing, IEEE, and
ACM.

ETRI Journal, Volume 35, Number 1, February 2013 Yo-Won Jeong et al. 79

