
For real-time interactive multimedia operations, such as 
video uploading, video play, fast-forward, and fast-rewind, 
solid state disk (SSD)-based storage systems for video 
streaming servers are becoming more important. Random 
access rates in storage systems increase significantly with 
the number of users; it is thus difficult to simultaneously 
serve many users with HDD-based storage systems, which 
have low random access performance. Because there is no 
mechanical operation in NAND flash-based SSDs, they 
outperform HDDs in terms of flexible random access 
operation. In addition, due to the multichannel 
architecture of SSDs, they perform similarly to HDDs in 
terms of sequential access. In this paper, we propose a new 
SSD-based storage system for interactive media servers. 
Based on the proposed method, it is possible to maximize 
the channel utilization of the SSD’s multichannel 
architecture. Accordingly, we can improve the 
performance of SSD-based storage systems for interactive 
media operations. 
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I. Introduction 

The recent growth of communication and multimedia 
computing technologies has led to a huge demand on servers, 
which must support an increasingly wide range of interactive 
media services for user created content (UCC), education, and 
entertainment. 

Conventional interactive operations include play, pause, and 
stop functions. However, modern interactive media servers 
must include additional operations, as described below. First, 
the media server must have high performance for the many 
user-based write requests to upload UCC. Second, the media 
server must support such VCR-like services as fast-forward 
and fast-rewind at multiple speeds [1]. These VCR-like 
services are the most important features because the fast-
forward and fast-rewind are the operations that are most 
frequently used aside from the play and stop operations. Third, 
the variety of user devices (such as a high performance PC, 
notebook, or mobile phone) demands a video scalability 
service. These operations could be efficiently realized through 
such multilayer video coding as scalable video coding (SVC) 
[2]. However, because of high encoding overhead and the 
implementation complexity of SVC, SVC technologies have 
not yet been widely deployed in related industries. It is thus 
difficult to fully support all the scalability modes of SVC, such 
as spatial, quality, and temporal scalability. For this reason, this 
paper focuses on the interactive media servers that store such 
single-layer video streams as H.264 video consisting of I-, P-, 
and B-frames. 

Single-layer video streams can support such interactive 
services as multilevel fast-forward, fast-rewind, and scalability 
by alternately skipping and delivering video frames [3]. Figure 
1 shows an example of the approach. The play level indicates  
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Fig. 1. Example of diverse access patterns resulting from various
play levels. 
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the level of fast-forward, fast-rewind, or temporal scalability. 
Specifically, Play Level 1 means the operation of playing all 
video frames. If a client requests Play Level 2 or above, the 
media server can support the requested play level by 
transferring frames with a frame-skipping operation, as shown 
in Fig. 1. Even with this skipping, the client can still play the 
received video stream because of the interdependence 
characteristics that exist among I-, P-, and B-frames [3]. This 
method is not applicable to the spatial and quality scalabilities 
but applicable to the temporal scalability and fast-forward/fast-
rewind services. Therefore, the target of this paper is to increase 
the efficiency of the method of adjusting play levels to nicely 
support the temporal scalability and fast-forward/fast-rewind 
services. 

Note that the spatial and quality scalabilities using single-
layer video streams can also be supported by storing multiple 
single-layer video streams encoded at different bitrates and 
resolutions for the same video title, which is a widely adopted 
approach in the industry. 

For video streaming services, real-time video delivery with 
minimal delay is one of the most important considerations. If 
the network is fast and stable, delay and real-time performance 
are limited by server performance. However, the diverse media 
access patterns mentioned in Fig. 1 for interactive media 
operations lead to random access of a huge disk in the storage 
devices of the server [3]. Particularly, as the level of play 
increases, the random access rate also increases. The reason is 
that the distance between physical regions on the disk, where 
the frames to be accessed are stored, increases. It is thus 
difficult to concurrently ensure minimal delay and fulfill real-
time requirements while serving many clients using HDD-
based servers, which have poor random access performance. 

Meanwhile, flash memory has come to the forefront in 
recent years, and flash memory-based solid state disks (SSDs) 
are rapidly broadening their share of the storage market due to 
the short random access time [4], [5]. While HDDs have low 
performance for seek times and rotational latency due to their 
mechanical limitations, SSDs have no mechanical 
components; thus, the SSD has only low seek latency due to 
the electronic components. Therefore, SSD-based video 
streaming servers supporting interactive media operations 
outperform their HDD-based counterparts. 

In this paper, we propose a new SSD-based storage system 
for interactive media servers. We first analyze the throughput 
characteristics of random access for constant sizes of read 
requests in SSDs. Based on these throughput characteristics, 
we determine the request size that maximizes disk throughput 
and guarantees that read and write requests always have that 
size for all interactive operations based on the scheme of 
separated frame buffers. 

The remainder of this paper is organized as follows. In 
section II, we review the backgrounds of interactive media 
operations and the characteristics of flash-based SSDs. Based 
on this review, we discuss critical design considerations of the 
storage system for media streaming servers. In section III, we 
describe the proposed method, which exploits the separated 
frame buffers. In section IV, we show extensive experiment 
results to validate the efficiency of the proposed method. We 
then discuss the results and conclude our work in section V. 

II. Related Works 

1. Interactive Media Operations 

The write operations among interactive media operations 
always sequentially store entire video files to the server’s disks. 
Thus, we do not need multiple levels for write operations, 
unlike what is required for read operations. 

Stored video files are typically compressed by video 
compression standards, such as MPEG-x and H.26x. Generally, 
these compression standards use three types of video frames: 
intra-coded frame (I-frame), predictive-coded frame (P-frame), 
and bidirectionally predictive-coded frame (B-frame). I-frames 
are encoded independently and focus on removing 
redundancies existing within a picture. P-frames are encoded 
using predictions from the preceding I- or P-frame in the video 
sequence. B-frames are encoded using predictions from the 
preceding and succeeding I- or P-frames in the video sequence. 
Encoded video typically repeats the pattern of I-, P-, and B-
frames, the so-called group of pictures (GOP), for the duration 
of an individual video stream [6]. Figure 2 shows an example 
of a GOP. The arrows indicate frame dependency relationships.  
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Fig. 2. Dependency structure of frames in GOP. 
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According to these dependency relationships, even if B-frames 
are skipped, we can decode all other frames. If we skip frames 
to decode a P-frame, we cannot decode upcoming P- or B-
frames within the GOP. If we skip frames to decode an I-frame, 
we cannot decode the entire GOP. 

Because the media server does not need to read whole video 
frames as its play level to minimize the data bandwidth of the 
server, it can serve various play levels requested by skipping 
(or jumping) the transfer of video frames. For example, in Fig. 
1, Play Level 2 can be achieved by transferring frames while 
skipping even-numbered B-frames. Even with this skipping, 
the client can still play the stream because the skipped B-
frames do not affect any other frames according to the 
dependency relationships among I-, P-, and B-frames. Play 
Level 3 can be achieved by transferring frames while skipping 
all even- and odd-numbered B-frames, and Play Level 4 can be 
achieved by additionally skipping all P-frames. Next, we can 
increase the play level by periodically skipping I-frames. By 
using these jumping read operations, we can minimize the data 
bandwidth of server disks and reduce the load on the server 
disks. However, if video files are written to disks in encoding 
order (which is a conventional way to store video files), the 
jumping read operations result in huge amounts of random 
access in the server disk [3]. It is thus difficult to 
simultaneously provide video data in real-time, with minimal 
delay, to many users using HDD-based servers. 

To rectify this situation, some previous works proposed 
efficient placement of video data to HDD-based storage systems 
that support interactive media operations. We describe two 
technically feasible approaches related to the proposed media 
server design. Rangaswami and others [1] developed an 
interactive media proxy that transforms noninteractive broadcast 
or multicast streams into interactive ones. They carefully manage 
the disk device by considering disk geometry for allocation and 
by creating several stream files according to the various play 
levels. However, this method demands high storage capacity, and 
they did not consider additional write overhead. 

Media synchronized RAID (MSR) [3] increases RAID disk 
performance for media servers by supporting interactive 
operations using the following two schemes. First, the authors 
synchronize sizes of all encoded frames to a RAID stripe size.   

 

Fig. 3. Placement algorithm on disk array in media-synchronized
RAID.
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If the video streams that are composed of the stripe-sized 
synchronized frames are written to the RAID disks, I-, P-, and 
B-frames can be organized into the individual disks, as shown 
in Fig. 3. To synchronize the frames to the stripe size, an 
accurate bitrate control scheme was proposed [3]. Second, the 
authors proposed a per-disk prefetching scheme to increase 
disk performance. With these two schemes, MSR can increase 
RAID disk performance. However, the MSR method yields 
video quality degradation caused by fitting the number of bits 
of each frame to a predetermined size. Another limitation is 
that various types of video streams encoded with various 
bitrates cannot be supported. 

To overcome the limitations of the previous efforts, we 
propose a scheme to group video frames by type to improve 
the performance of SSD-based storage systems. 

2. NAND-Flash-Based Solid State Disk 

Unlike HDDs, because flash memory can quickly access 
data regardless of physical location, SSDs can provide uniform 
and fast random access speeds—this is a key advantage of 
SSDs [7]. However, sustained read and write speeds for single 
flash memory are much slower than those of HDD disks. To 
compensate for that drawback, most SSDs employ a 
multichannel and multiway architecture, as shown in Fig. 4 [8], 
[9]. 

In this architecture, sequential write operations stripe the 
buffered data into m channels to maximize the channel 
utilization, as shown in Fig. 5. In each channel, because the 
flash memory uses one data bus, data must be transferred over 
the bus by time division. A pipeline scheme of the n-way 
architecture is adopted to increase the parallelism [8]. 

According to the striping and pipelining scheme, in a 
sequential write, data is spread over all flash memory with high 
probability. We define the request size as the data size requested 
from the host to the disk for a one-time read or write operation; 
as the read request size increases, the probability that spread 
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Fig. 4. m-channel and n-way architecture of SSD. 
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Fig. 5. General write operations in SSD. 
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data is simultaneously read from all flash memory increases. 
Therefore, in read operations of SSD, the request size is the 
most important factor affecting the read performance. To 
analyze the characteristic difference between SSD and HDD, 
we use the IOMeter benchmark program [10]. The benchmark 
program is employed in an Intel Pentium D 3.2-GHz processor 
with 2 GB of main memory. The operating system used in the 
test is Windows 7. The benchmark results display read/write 
throughput as a function of request size, as shown in Fig. 6. We 
measure throughput for both sequential and random access. We 
use two SSDs and one HDD storage device. SSD1 
corresponds to Mtron MSD-SATA 3025 [11], SSD2 
corresponds to Samsung MCBQE32G5MPPOVA [12], and 
HDD corresponds to Seagate 7200.10 [13]. Their basic 
specifications are summarized in Table 1.  

As shown in Fig. 6, for data writing, sequential write 

Table 1. Summary of specifications of sample SSDs and HDD.

Specifications SSD1 SSD2 HDD 

Model name 
Mtron  

MSD-SATA 
3025 

Samsung 
MCBQE32G 

5MPP 

Segate 
7200.10 

Interface S-ATA 2 S-ATA 2 S-ATA 2 

Capacity 32 GB 32 GB 32 GB 

Structure/type
4-ch., 4-way 

SLC* 
4-ch., 4-way 

SLC* 
7,200 rpm 

Sustained 
write speed 80 MB/s 80 MB/s NA 

Sustained  
read speed 100 MB/s 100 MB/s NA 

 * SLC: Single level cell. 

 

Fig. 6. Throughput measured by IOMeter benchmark program:
(a) write test and (b) read test. 
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throughput is higher than that of random write for all storage 
devices. For both SSD and HDD, sequential write throughput 
becomes saturated for data request sizes in excess of 32 KB for 
SSD1, 64 KB for HDD, and 128 KB in SSD2. These 
saturation points mean that the system bus is fully operated 
with its maximum bandwidth. For SSDs, the full bandwidth is 
achieved by writing data to all flash memory in a fully parallel 
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fashion to maximize channel utilization. For reading data, 
throughput characteristics of SSD are markedly different from 
those of HDD. The throughput gap between sequential and 
random reads in SSD is smaller than in HDD, and only the 
request size affects the read throughput. Random read 
throughput becomes saturated for data request sizes in excess 
of 256 KB for SSD1 and 512 KB for SSD2. At these request 
sizes, we can maximize SSD channel utilization even if the 
access patterns are all random. 

With due consideration of the above results, we summarize 
the following design strategies to increase the performance of 
storage systems in terms of throughput [14], [15].  

i) For HDD write and read operations, one must favor 
sequential over random access as much as possible. If random 
access is required, the data request size must be large (up to 
several MB). However, the request size must be limited by the 
data size being read.  

ii) For SSD write operations, similar to HDDs, one must favor 
sequential over random access as much as possible. If random 
access is required, the data request size must be made large.  

iii) For SSD read operations, unlike for HDDs, differences in 
throughput between random and sequential operations are 
negligible when the throughput is saturated. An important 
consideration in terms of maximum throughput is the read 
request size to obtain saturated throughput. 

III. Proposed Placement Method 

1. Proposed Method with Separated Buffers 

If we increase the request size to the throughput saturation 
point, we can maximize read throughput performance. To 
maintain that request size for all play levels, we must gather 
video frames according to type by replacing the video 
sequence data in video write operations. 

Figure 7 outlines the basic concept of the proposed storing 
method. When encoding video streams, we separate encoded 
video frames based on frame type. For B-frames, we further 
separate frames according to their frame numbers (odd/even) 
because the play level can be distinguished by skipping either 
even B-frames or both even and odd B-frames. For I-frames, 
we also further separate frames according to their frame 
numbers (odd/even). Then, the play level using both even and 
odd I-frames and the play level using only odd I-frames can be 
distinguished. Therefore, five separated buffers are needed as 
shown in Fig. 7. All buffers have the same size (S). Whenever 
the size of data in one of the five buffers reaches S, the data of 
the occupied buffer is sequentially written to the SSD, and the 
sequential write pattern is thus preserved. Because the write 
request size is always the same as the buffer size, we can  

 

Fig. 7. Basic concept of proposed placement method. 
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achieve the maximum disk bandwidth if we select a buffer size 
larger than the request size of the saturation point in Fig. 6. We 
distinguish data blocks to be written according to frame type as 
follows: Iodd block, Ieven block, P-block, Bodd block, and BBeven 
block. Because the frame sizes can change, the last frame of 
each block might be fragmented. In Fig. 7, the written order of 
blocks and frames included in each block are examples of 
video content. The first P-block has full P-frames from P1 to P5 
and the start of a fragmented P6-frame. The end of the P6-frame 
is placed in the next P-block. If the video ends before a buffer is 
full, we pad the buffer with zeros and write the data to the SSD. 
The proposed method guarantees that the read and write 
request sizes are always the same as the buffer size. For 
example, for Play Level 2, we need all the I- and P-frames and 
odd-numbered B-frames. Because the proposed method writes 
frames of the same type together to a block, as shown in Fig. 7, 
we can obtain necessary frames by reading Iodd blocks, Ieven 
blocks, P-blocks, and Bodd blocks. For Play Level 5, we need 
only odd-numbered I-frames. We can obtain these frames by 
reading only Iodd blocks. For all play levels, because the request 
unit is always a block, all the request sizes are S. We next 
determine the buffer size S that maximizes the throughput. 

2. Determining Sizes of Separated Buffers 

There are two considerations for determining buffer size. 
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First, we must determine a buffer size that maximizes SSD 
throughput. Recall that, with the proposed method, write access 
patterns are always sequential, and read access patterns are 
always random position requests of the same size. With these 
access patterns, throughput increases as the buffer size 
increases up to a saturation point at which channel utilization is 
maximized (as described in subsection II.2). Therefore, we 
should set the buffer size such that channel utilization is 
maximized for both read and write operations. However, 
because the channel utilization algorithms of commercially 
available SSDs are generally undisclosed, we must determine 
the buffer size through experiments. Second, we must consider 
drawbacks associated with a large buffer size. As buffer size 
increases, play start time delay also increases. For example, if a 
user requests to start Play Level 1, the server must read all 
types of blocks (Iodd block, Ieven block, P-block, Bodd block, and 
BBeven block) at least once. In addition, with the increased buffer 
size, the frequency of reading irrelevant data also increases. For 
example, assume that I1, I3, and I5 frames are written together 
into an Iodd block. Even if a user requests only the I1 frame, we 
must read the entire Iodd block, which includes I1, I3, and I5 
frames. In this case, if the user stops playback before the I3 
frame is reached, the I3 and I5 frames that have already been 
read may not be needed. This problem can be applied to other 
types of frames. We must therefore determine an efficient 
buffer size that considers both SSD throughput and avoids 
potentially useless data reads. 

To determine the efficient buffer size, we experimentally 
measure the write throughput and the read throughput as a 
function of buffer size. The experiment is set up as follows. For 
the write test, we assume that a number of users write their own 
video streams to the SSD using the proposed method. The total 
play times of written videos are randomly set from 5 to 20 
minutes. For the read test, we assume that a number of users 
requested Play Level 4 (read all I-frames only) from their own 
video streams stored in SSD from the start to end frames. The 
read request sizes are the same as the buffer size used for write 
operations.  

The experiment results are shown in Figs. 8 and 9. Figure 8 
shows write throughput as a function of the size of separated 
buffers ranging from 8 KB to 4 MB for two types of SSDs and 
an HDD. For the large enough buffer sizes (approximately  
128 KB) shown in that figure, SSD throughput saturates. Even 
if the buffer size exceeds this saturation point, throughput 
hardly increases because the maximum channel utilization is 
achieved. Due to the poor random access performance of the 
HDD, its throughput approaches the saturated throughput of 
SDD2 at a buffer size of several MB.  

Figure 9 shows read throughput as a function of buffer size 
ranging from 8 KB to 4 MB for two types of SSDs and an  

Fig. 8. Write throughput as function of buffer size for two types
of SSDs and HDD.
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Fig. 9. Read throughput as function of buffer size for two types 
of SSDs and HD for Play Level 4. 
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HDD. As buffer size increases, the throughput increases and 
saturates for large buffer sizes. Even if the SSD1 and SSD2 
specifications are similar, their read throughput characteristics 
are quite different. SSD2 throughput for small read requests is 
lower than that of SSD1. However, as the buffer size becomes 
larger, the increment of the throughput of SSD2 is greater than 
that of SSD1, and the saturated throughput of SSD2 is also 
higher. Throughput saturation starts at buffer sizes of around 
128 KB for SSD1 and 256 KB for SSD2. Similar to the write 
requests case, channel utilization is maximized for read 
requests in excess of these saturation points. Thus, the 
throughput hardly increases. Due to the poor random access 
performance of the HDD, its throughput approaches the 
saturated throughput of SSD2 at a buffer size of several MB. 
The above analysis focuses on the case of Play Level 4. Similar 
read and write throughput characteristics could also be 
observed for other play levels.  

Based on the above results, we set the separated buffer size 
to be 128 KB and 256 KB for SSD1 and SSD2, respectively. 
Even if the buffer size increases beyond 128 KB (for SSD1) or 
256 KB (for SSD2), there is hardly an increase in the read 
throughput and the write throughput. The performance is rather 
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degraded by unnecessary reads. If we apply the proposed 
method to the HDD and want to obtain the same performance 
as that of the SSDs, we must set the size of separated buffers to 
be at least 4 MB, which results in that much more memory 
space being required than in SSD cases, and unnecessary reads 
increase. 

3. Proposed Metadata Structure 

The proposed method does not write video data in its 
encoding order. We must tailor the metadata structure to allow 
for fast searching of requested frames in the streaming file. We 
propose the following method for efficient metadata writing: 
whenever a frame block is written to the SSD, its metadata 
information is stored in another buffer whose size is also S, as 
shown in Fig. 7. If the metadata buffer is full, the metadata in 
the buffer is flushed to the SSD. If the video data ends before 
the metadata buffer is full, we pad the metadata with zeroes to 
the full buffer size and flush it to the SSD. The reason to write 
with a constant buffer size unit (instead of writing the complete 
metadata at one time) is that the total size of the proposed 
metadata can increase with the number of frames of video. For 
example, if a video file contains two-hour, 30-fps content, its 
total metadata size is about 1.2 MB (=30 fps × 2 hours × 3,600 
seconds × 6 bytes per frame). If many users request several 
hundred video files, the metadata is read frequently from the 
disk because it is too large to hold all metadata in memory. By 
making the buffer size of the metadata the same as the frame 
buffers, we can always maintain the read and write request 
sizes of the disk access at a constant value. 

Figure 10 shows the proposed metadata structure. Each 
value in the table corresponds to the placement shown in Fig. 7. 
In Fig. 10, the “block number” denotes the written order. The 
position of a block in the stream file can be found by 
multiplying its block number by S. Content information is split 
(and written) into five categories: frame type, start frame index, 
number of frames, fragment, and link offset. Each frame has its 
own frame index that indicates the encoding order. We count 
the frame index for each individual frame type. For example, 
the frame indices of the first I-, P-, and B-frames are all 1, and 
the frame indices of the second I-, P-, and B-frames are all 2, 
and so on. The start frame index in the metadata indicates the 
frame index of the start frame of the current block. The number 
of frames is the number of frames included in the block, and 
the fragment bit identifies whether or not the last frame is 
fragmented. For example, according to Fig. 7, the first P-block 
(whose block number is 0) has full P-frames from P1 to P5 and 
the head of the fragmented P6-frame. Therefore, frame type, 
start frame index, number of frames, and fragment value are set 
to P, 1, 6, and 1, respectively, as shown in Fig. 10. The link  

 

Fig. 10. Proposed metadata structure. 
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Fig. 11. Separated buffer size variance for two types of mixed
media operation services. 
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offset in the metadata is employed for fast searching. It records 
the distance between the number (or index) of the current block 
and the number of the next block that has frames of the same 
type as the current block. From Fig. 10, because the block 
number of the first P-block is 0 and the block number of the 
second P-block is 5, the link offset of the metadata of the first 
P-block is 5 (= 5–0). Similarly, because the block number of 
the first Iodd block is 3 and the block number of the second Iodd 
block is 6, the link offset of the metadata of the first Iodd block is 
3 (= 6–3). Because there is a high probability (for any play 
level) that the same type of blocks are read within a short time 
period, the link offset information helps to search the necessary 
blocks quickly. 

As shown in Fig. 11, if we assume that a user requests Play 
Level 3 from P13, then, to satisfy the user’s request, we need all 
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I-frames from I4 and all P-frames from P13 because the 
decoding of P13 is dependent on I4. In the metadata of Fig. 11, 
the 0-th block is the first P-block. This block does not include 
P13, so we must find the next P-block by using the link offset. 
According to the link offset of the first P-block, we can 
determine that the block number of the second P block is 5. 
This block includes P13, so we must read it. Subsequent     
P-blocks can be found by the link offset of their previous    
P-blocks. In the same way, we can find Ieven and Iodd blocks as 
needed. We set the size of the metadata of each block to 6 bytes 
and allocate bits to each field, as shown in Fig. 10. This 
allocation strategy allows us to represent video streams that 
have 216 blocks and 218 B-frames because the bit lengths of the 
block number and the start frame index are 16 bits and 18 bits, 
respectively. For example, if the block size is 128 KB, the 
frame rate is 30 fps, and the GOP structure is IBBPBBP…,  
216 blocks implies about 8 GB (= 216 × 128 KB) of video data, 
and 218 B-frames implies 3.5 hours (= 218 × 3/2 frames / 30 fps / 
3,600 seconds) of running time. If we want to support a video 
with a longer running time, we can increase the length of the 
start frame index 18 bits to 26 bits (then the metadata size 
becomes 7 bytes). This one-byte increment is negligible 
relative to the video data size. 

IV. Experiment Results 

We perform various experiments to evaluate the 
performance of the proposed placement method. The number 
of simultaneous users is set to 20, 50, and 80. Each user is 
allowed to write or to read from an individual file. The pseudo 
code for the thread of data writing is as follows: 

fd_ssdwr = 

 open(video_file_name,O_RDWR|O_CREAT|O_DIRECT); 

while(1) { 

if(buffer_fill>=PROP_ORWR_SIZE) 

wr_res =  

write(fd_ssdwr, buffer_data, PROP_ORWR_SIZE); 

} 

We use the O_DIRECT option of Linux to open a video file. 
Generally, for an application’s write request, the Linux file 
system does not write the data immediately but gathers several 
requests and writes one time, which leads to changing the 
request size transferred to the disk. By using the O_DIRECT 
option, we can prevent the file system from changing the 
request size at write operations. If a buffer is filled with more 
than a predefined size (PROP_ORWR_SIZE), we flush the 
buffer’s data of that size. Video files are encoded using 
H.264/AVC [16], [17] with a 2-Mbps bitrate and a 30-fps 
frame rate. The GOP pattern is set as IBBPBBPBBPBB...PBB..., 
and the number of frames in one GOP is 90 (corresponding 

 

Fig. 12. Throughput as function of separated buffer size for two
types of mixed media operation services. 
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to three seconds). 

In the experiment, we compare the proposed method as 
described in the previous section with a conventional method 
that places video stream data in its play order of Play Level 1. 
For the comparison, we measure the total throughput of the 
disk, which is defined as the total read and write data rate of a 
disk to serve all user requests. When many clients try to access 
video data, it is difficult for the server to guarantee real-time 
service for all clients because of the disk bottleneck. The higher 
the total throughput of disks, the greater the number of clients 
for whom real-time service can be guaranteed. 

We analyze the obtained results by the following three steps: 
i) First, we examine total throughput as a function of 

separated buffer size for mixed media operation services; this 
allows us to determine the optimal buffer size for maximum 
throughput; 

ii) Second, we examine the total throughput as a function of 
the number of users for some individual media operations; we 
compare the proposed method with a conventional one; in this 
experiment, we can clearly identify the strong and weak points 
of the proposed method for different play levels; 

iii) Third, we examine the total throughput as a function of 
the number of users for mixed media operation services.  
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Fig. 13. Throughput for various media operation services: write
and Play Levels 1, 3, and 5. 
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Figure 12 shows total throughput as a function of separated 
buffer size for two types of mixed media operations. The types 
of mixed media operations are determined by the proportions 
of media operations requested by clients. In the first type, we 
assume the request ratio for write and Play Levels 1, 2, 3, 4, 
and 5 to be 0.1 : 0.5 : 0.1 : 0.1 : 0.1 : 0.1. In the second type, we 
assume the request ratio for write and Play Levels 1, 2, 3, 4, 
and 5 to be 0.1 : 0.3 : 0.15 : 0.15 : 0.15 : 0.15. In each case, we 
increase the buffer size from 8 KB to 4 MB. Throughput 
increases with buffer size as channel utilization increases. 
However, throughput suffers somewhat in the case of a large 
buffer size as the frequency of irrelevant data read increases. 
Maximum performance is obtained for buffer sizes of 128 KB 
and 256 KB for SSD1 and SSD2, respectively, as shown in Fig. 
12. 

Figure 13 shows the measurement results of the total 
throughput for individual media operation services. For write 
operations, the size of the five separated buffers in the proposed  

 

Fig. 14. Throughput for mixed media operation services: write
and Play Levels 1, 2, 3, 4, and 5. 
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method is set to 128 KB and 256 KB for SSD1 and SSD2, 
respectively. The size of the single buffer in the conventional 
method is 640 KB and 1,280 KB for SSD1 and SSD2, 
respectively.  

As the examination in this work shows, the write throughput 
of the proposed method is similar to that of the conventional 
method because the write throughput does not significantly 
increase with the requested data size if this size exceeds 64 KB 
for SSD1 or 128 KB for SSD2, as shown in Fig. 8. 

For Play Levels 1, 3, and 5, the read request sizes for both 
the proposed and conventional methods are the same as the 
size of the separated buffers. The service time of each media 
operation is five minutes. For Play Level 1, the throughput of 
the proposed method is slightly lower than that of the 
conventional method because of prefetching of unneeded data 
when the user stops play. The proposed method results in a 
greater amount of this data than the conventional method. 
However, as the service time of each media operation increases, 
the throughput gap decreases. For increased play levels, the 
proposed method significantly outperforms the conventional 
method because, in the conventional method, the number of 
dropped frames caused by skipping increases as the level of 
play increases.  

Figure 14 shows the total throughput for mixed media 
operations. In this experiment, we show results for two cases. 
For the first case, we set the request ratio for write and Play 
Levels 1, 2, 3, 4, and 5 to be 0.1 : 0.5 : 0.1 : 0.1 : 0.1 : 0.1. For 
the second case, we set the request ratio for write and Play 
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Levels 1, 2, 3, 4, and 5 to be 0.1 : 0.3 : 0.15 : 0.15 : 0.15 : 0.15. 
Because the performance of the proposed method is slightly 
degraded in Play Level 1 and increases as the level of play 
increases, the proposed method shows much better 
performance in the second case. For the second case with 
SSD2, the throughput gain of the proposed method is more 
than 34%. The proposed method therefore exhibits better 
performance as the proportion of Play Levels 2 through 5 
increases in the mixed media operations because the random 
access rate of the disk increases. SSD2 outperforms SSD1 with 
the proposed method because the saturated throughput of 
SSD2 is higher than that of SSD1. 

In addition, Fig. 14(a) shows the total throughput of HDD. 
For HDD, we set the buffer size to 512 KB. The throughput of 
the proposed method is higher than that of the conventional 
method by 13% (case 1) and 11% (case 2). The proposed 
method is more powerful in SSD than in HDD because SSD 
achieves its maximum throughput with a much lower request 
size than HDD. 

V. Conclusion 

In this paper, we proposed a new storage system to increase 
the number of users who can be simultaneously served in real-
time interactive operations using SSD-based video streaming 
storage systems. Support of real-time interactive media 
operations, such as video uploading, video play, fast-forward, 
and fast-rewind, for as many users as possible, is an important 
issue. Considering that random access rates in storage systems 
are increasing dramatically with the number of users, serving 
multiple users simultaneously is difficult with conventional 
HDD-based storage systems since they suffer from poor 
random access performance. NAND flash-based SSD 
outperforms HDD in terms of random access. Based on 
throughput analysis, we determined a constant buffer size that 
maximizes throughput. We then generated requests with that 
size for all play levels. This constant request size was possible 
because we gathered and wrote video frames as their types by 
using the proposed placement method with separated buffers. 
Extensive simulations showed that the proposed method can 
significantly improve disk storage system throughput for 
interactive media operations. 
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