





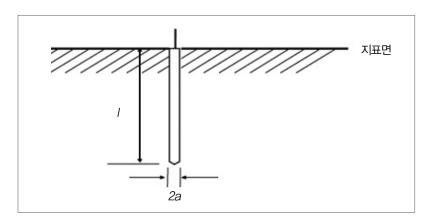

# 건축전기설비기술사 문.제.해.설.

글 / 김세동 (두원공과대학교 교수, 공학박사, 기술사 e-mail: kimse@doowon.ac.kr)

# 대지저항률의 측정법인 4전극법과 전위강하법을 기반으로 하는 3전극법에 대해서 설명하시오.

| 항 목              | Key Point 및 확인 사항                                                                                                                                         | 비고 |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Key Word         | 대지저항률 측정법(4전극법과 3전극법)                                                                                                                                     | _  |
| 관련 이론 및<br>실무 사항 | <ol> <li>대지저항률 정의 및 측정법 개념</li> <li>접지저항 측정기를 이용한 측정</li> <li>IEEE Standards와 BS 7430 등의 표준</li> <li>접지에 대한 규정으로 전기설비기술기준 판단기준 및<br/>내선규정 등 확인</li> </ol> | _  |

# <해 설>


# 1. 대지저항률의 중요성

접지시스템의 성능에 가장 크게 영향을 미치는 요인이 대지저항률이며, 접지의 설계와 시공에 있어서 대지저항률을 정확하게 파악하는 것은 매우 중요하다. 일반적으로 대지저항률 측정법에는 4전극법과 전위강하법을 기반으로 하는 3전극법이 있다.

# 2. 3전극법의 개요 및 측정 방법

#### 가. 개요

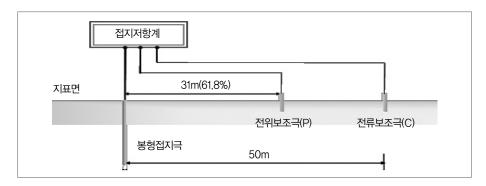
3전극법은 그림 1과 같이 측정하고자 하는 장소에 봉형 접지극(ground rod)을 수직으로 설치하고, 접지극의 접지 저항을 측정한 후 이론식을 적용하여 대지저항률을 산출하는 방법이다.



[그림 1] 수직으로 설치한 봉형 접지극

봉형 접지극의 상단이 대지의 지표면에 위치하도록 설치한 경우 접지저항은 이론적으로 식 (1)과 같다.

$$R = \frac{\rho}{2\pi l} \ln \frac{2l}{a} \tag{1}$$


여기서, R은 접지저항[Q],  $\rho$ 는 대지저항률[ $Q \cdot m$ ], l은 봉형접지극의 매입깊이[m], 는 봉형접지극의 반경[m]을 나타낸다. 식 (1)로부터 대지저항률은 식 (2)와 같이 산출한다.

$$\rho = \frac{2\pi lR}{\ln\frac{2l}{a}} \tag{2}$$

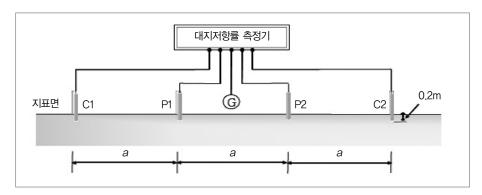
이 방법은 측정하고자 하는 깊이까지 측정전류가 흐르도록 접지극의 길이를 길게하여 측정하므로 깊이 변경법 (Variaion-Of-Depth Method)이라고도 하며, 접지극 근방 토양의 특성에 관한 정보를 얻을 수 있다.

# 나. 측정 방법

수직으로 설치한 봉형 접지극의 접지저항은 그림 2와 같이 측정회로를 구성하여 전위강하법으로 측정한다. 전류 보조극을 측정대상 접지극으로부터 50m 떨어진 위치에 설치하고, 전위보조극을 일직선상의 61.8% 지점에 배치시켜 측정한 접지저항을 식 (2)에 대입하여 대지저항률을 산출한다.



[그림 2] 전위강하법을 이용한 접지저항의 측정회로


# 3. 4전극법의 개요 및 측정 방법

#### 가. 개요

4전극법은 전류보조극과 전위보조극을 설치하여 접지저항을 측정한 후 전극간격에 따라 대지저항률을 계산하는 방법이다. 4전극법은 측정용 전류보조극과 전위보조극을 배치하는 방법에 따라 Wenner법, Schlumberger-Palmer법, Dipole-Dipole법 등으로 분류된다. 보조전극을 동일한 간격으로 배치하는 Wenner 4전극법이 가장 널리 이용되고 있으며, 대지구조가 균질이거나 잘 정리된 경우 정확도가 우수하다.

#### 나. Wenner 4전극법의 개요

Wenner 4전극법은 4개의 측정용 전극을 직선상의 동일한 간격으로 배치하는 방법으로써 그림 3과 같이 4개의 전극을 대지에 설치하고, 바깥 쪽 전극 간(C1-C2)에 흐르는 전류 와 안쪽 전극 간(P1-P2)에 유도되는 전압 V를 측정하여 대지저항률을 산출하는 방법이다.



[그림 3] Wenner 4전극법에 의한 대지저항률의 측정회로

# 다. 측정 방법

바깥쪽의 두 전극 C1과 C2 사이에 전원을 공급하여 대지에 전류를 흘리고, 이 때 안쪽의 두 전극 P1과 P2 사이의 전위차를 측정하여 로부터 접지저항 [Q]을 구한다. 또한 전극 간격을 [m]라 하면 대지저항률  $[Q \cdot m]$ 은 식 (3)으로 부터 산출되며, 대략 깊이 [m]까지의 평균 대지저항률을 나타낸다.

$$\rho = 2\pi a R \tag{3}$$

측정용 전극 C1, C2, P1, P2의 접지저항에는 관계없이 대지저항률이 산출된다. 전극 간격을 크게하면 측정용 전류가 침투하는 깊이까지의 대지저항률의 평균값을 측정할 수 있게 된다.

# ☞ 추가 검토 사항

## 1. 3전극법과 4전극법에 의한 측정방법에 대해서 어떠한 차이점이 있는지 관련 연구논문 확인

- 가. 대지표면이 건조하고 안정화된 대지구조일 경우, Wenner 4전극법으로 측정한  $\rho-a$ 곡선과 3전극법으로 측정한  $\rho-l$  곡선은 비교적 잘 일치하는 것으로 지적됨.
- 나. 대지표면이 습한 상태 또는 결빙 상태이거나 주변에 시설물이 있는 경우 Wenner 4전극법의  $\rho-a$ 곡선과 3전극법의  $\rho-l$  곡선은 큰 차이를 나타내는 것으로 지적됨.
- 다. Wenner 4전극법으로 측정한  $\rho-a$  곡선은 3전극법으로 측정한  $\rho-l$  곡선에 비하여 대지표면 상태에 의한 영향이 보다 현저한 것으로 지적됨.

## 2. 대지저항률의 정의

단면적이  $1m^2$ 이고, 길이가 1m인 토양의 전기저항을 대지저항률, 대지 고유저항 또는 대지 비저항(Specific resistivity)이라고 정의하며, 로 표시하고 단위는  $[Q \cdot m]$ 이다. KEA

#### [참고문헌]

<sup>1.</sup> 편저자 최세하. 알기쉬운 접지 실무기술. 진한도서

<sup>2.</sup> 이복희 외, 대지표면상태가 대지저항률 측정의 정확도에 미치는 영향, 조명전기설비학회 논문지, 2013

<sup>3.</sup> IEEE Standards Board, "IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System", 1983