

42 © 2013 한국전자통신연구원

 The R language is an open source programming language and a

software environment for statistical computing and data visualization.

The R language is widely used among a lot of statisticians and data

scientists to develop statistical software and data analysis. The R

language provides a variety of statistical and graphical techniques,

including basic descriptive statistics, linear or nonlinear modeling,

conventional or advanced statistical tests, time series analysis, cluster-

ing, simulation, and others. In this paper, we first introduce the R

language and investigate its features as a data analytics tool. As results,

we may explore the application possibility of the R language in the field

of data analytics.

R 프로그래밍: 통계 계산과 데이터
시각화를 위한 환경
R programming: Language and Environment for Statistical Computing
and Data Visualization

2013
Electronics and
Telecommunications
Trends

빅데이터 처리 및

분석 기술 특집

Ⅰ. What is R

Ⅱ. Why use R in Statistics

Ⅲ. How R Works

Ⅳ. Statistical Analysis with R

Ⅴ. Data Visualization with R

Ⅵ. Producing Graphics in R

Ⅶ. Working with Large

Datasets

이두호 (D.H. Lee) BigData 시스템구조연구팀 선임연구원

Ye Ren* KAIST 그리드미들웨어센터 위촉연구원

* Chapters 5 and 6 were written in cooperation with Ye Ren.

이두호 외 / R 프로그래밍: 통계 계산과 데이터 시각화를 위한 환경 43

Ⅰ. What is R

The R language (hereinafter, R) is one of the

world’s most popular platforms for developing

statistical software. Archaeologists use it to track

the spread of ancient civilizations, drug companies

use it to discover which medications are safe and

effective, and actuaries use it to assess financial

risks and keep markets running smoothly. R is an

open source programming language for statistical

analyses and data visualization which is created by

Ross Ihaka and Robert Gentleman in 1996 [1]. R is

both a software and a language regarded as a

dialect of the S language developed by the Bell

Labs. S is available as the software S-PLUS

commercialized by Insightful [2]. On the other hand,

R is freely distributed under the terms of the GNU

General Public License: its development and

distribution are carried out by several statisticians

known as the R Development Core Team.

R is available in several forms: the sources (writ-

ten mainly in C and some routines in Fortran),

essentially for Unix and Linux machines, or some

pre-compiled binaries for Windows, Linux, and Mac

OS. The files needed to install R, either from

sources or from the pre-compiled binaries, are

distributed from the website of comprehensive R

archive network (CRAN) [3] where the instruction

manuals for installation are also available. For the

distributions of Linux, the binaries are generally

available for the most recent versions. For more

details, refer to CRAN website.

R allows the users to program loops to succe-

ssively analyze several datasets. It is also possible

that a single program combines with different

statistical functions to perform more complex

analyses. R users can benefit from a number of

programs written in the S language, most of which

are can be used directly with R.

Ⅱ. Why Use R in Statistics

What makes R so useful and helps explain its

quick acceptance is that statisticians, engineers and

scientists can improve the R software’s code or

write variations for specific tasks. Packages written

for R add advanced algorithms, colored and textured

graphs and mining techniques to dig deeper into

databases. For this reason, global big data compa-

nies such as Google, Facebook, Oracle, IBM, and

SAP have adopted R as their big data analytics tool

and engine. This seems unavoidable because R is

not only an open source language but also a

powerful tool for data analyses. R has many

features to recommend it [4]:

• R is a public domain implementation of the

widely regarded S language, and the R/S plat-

form is a de facto standard among statisticians.

• R is comparable, and often superior, in power

to commercial products in most of the signifi-

cant senses–variety of operations available,

programmability, graphics, and so on.

• In addition to providing statistical operations, R

is a general purpose programming language,

so one can use it to automate analyses and

create new functions that extend the existing

language features.

• R saves datasets between sessions, so it is not

44 전자통신동향분석 제28권 제1호 2013년 2월

necessary to reload them each time. It saves

command history automatically.

• R is available for Windows, Mac, and Linux OS.

• Due to an open source language, it is easy to

get help from user community. Also, lots of

new functions and state of the art algorithms

are contributed by users and developers, many

of whom are prominent statisticians.

• R incorporates features found in object-

oriented and functional programming language.

The terms object-oriented programming and

functional programming were mentioned above. The

following sections provide an overview of two

topics.

1. Object-Oriented Programming

The advantages of object-oriented programming

can be explained by example. Consider statistical

regression. When performing a regression analysis

with other statistical packages such as statistical

analysis system (SAS) or statistical package for

social science (SPSS), one may get abundant of

outputs on the screen. By contrast, if calling the

lm() regression function in R, the function returns

the object which contains all results including the

estimated coefficients, their standard errors,

residuals, and other statistics. User then picks and

chooses, programmatically, which parts of that

object to extract. This type of R’s approach makes

programming much easier because R offers a

certain uniformity of access to data. This uniformity

stems from the fact that R is polymorphic, which

means that a single function can be applied to

different types of inputs, which processes in the

appropriate way. Such a function is called a generic

function which is similar concept of virtual function

in C language.

2. Functional Programming

As is typical in functional programming language,

a common theme in R programming is avoidance of

explicit iteration. Instead of coding loops, users

exploit R applied to different types of inputs, which

piterative behavior implicitly. This may lead to code

that executes even more efficiently, and it can make

a huge timing difference when running R on a large

dataset. The functional programming nature of R

offers some advantages: (i) clearer and more

compact code, (ii) potentially much faster execution

speed, (iii) less debugging due to simpler code, and

(iv) easier transition to parallel programming.

Ⅲ. How R Works?

Once R is installed, the software is executed by

launching the corresponding executable. The

prompt, by default ‘>’, indicated that R is waiting for

your commands. At this stage, a new user is likely

to wonder “What can I do with R?” It is indeed very

useful to have a few ideas on how R works, and this

is what we will see now.

First, R is an interpreted language, not a compiled

one, which means that all commands typed on the

keyboard are directly executed without requiring

building a complete program like in C, Fortran,

Pascal, and so on. Second, R’s syntax is very simple

and intuitive. For example, a linear regression can

이두호 외 / R 프로그래밍: 통계 계산과 데이터 시각화를 위한 환경 45

be conducted by typing the command lm(y~x1+x2)

which means “fitting a linear model with y as a

response variable and x1 and x2 as explanatory

variables.” In R, all functions need to written with

parentheses, even if there is nothing within them

(for example, help()). If one types the name of a

function without parentheses, R just shows the

content of the function.

When R is running, variables, datasets, functions,

results, and all other things are stored in the active

memory of the system in the form of objects (see

(Figure 1)). The readings and writings of files are

used for input and output of data and results

including graphics. The user executes the functions

by typing some commands. The results are

displayed on the screen, stored in an object, or

written on the disk. Since the results are themselves

are objects, they can be considered as data and

analyzed as such. Data files can be read from the

local disk or from a remote server through internet.

The functions available to the users are stored in

a library localized on the disk in a directory. This

directory contains packages. A package is a

collection of pre-programmed functions, often

including functions for specific tasks. There are two

types of packages: those that come with the base

installation of R and those that users can manually

download and install. This is one of the big advan-

tages of open source programming language:

people love to share. Users throughout the world

have written their own special purpose R packages,

placing them in the CRAN repository and else-

where. In R, there is a difference between installing

and loading packages. Install implies adding the

package to R. Load means that users can access all

the functions in the package, and are ready to use it.

It is impossible to load a package if it is not installed.

(Figure 2) summarizes the process of installing and

loading packages.

Ⅳ. Statistical Analysis with R

The package stat contains functions for a variety

of basic statistical analyses such as classical tests,

linear and nonlinear model, distributions, hierarchical

clustering, time series analysis, and multivariate

analysis. Other advanced statistical analyses are

carried out in a large number of packages. Some of

packages are available with a base installation of R,

and many others are contributed and must be

installed individually. We will start with a simple (Figure 1) Schematic view of how R works.

(Figure 2) Overview of the process of installing and loading

packages in R.

46 전자통신동향분석 제28권 제1호 2013년 2월

example which requires no other package that stat

to introduce the basic statistical analysis for a given

dataset.

In statistics, analysis of variance (ANOVA) is a

collection of statistical models, and their associated

procedures, in which the observed variance in a

particular variable is partitioned into components

attributable to different sources of variation. In its

simplest form, ANOVA provides a statistical test of

whether or not the means of several groups are all

equal. The function for the analysis of variance in

the stats package is aov(). Let us take a dataset

accompanied by a installation of R: InsectSpray.

Six insecticides were tested and the observed

response was the count of insects. Each insecticide

was tested 12 times, thus there are 72 observations.

Under the null hypothesis that there is no difference

among six insecticides, the analysis is performed as

follows:

data(InsectSprays) # load a data set

ex<-aov(count~spray, data=InsectSprays) # do ANOVA

The results are not showed up because they are

assigned to an object called ex. To extract the

results, one may use summary() function for

detailed ones:

summary(ex)

Df Sum Sq Mean Sq F value Pr(>F)

Spray 5 2668.8 533.7 34.702 < 22e-16 ***

Residuals 66 1015.2 15.38

From the above, the null hypothesis is rejected

because p-value is smaller than 22e-16. In this

case, the test is said to be statistically significant.

V. Data Visualization with R

Data visualization is the visual representation of

data, by which means the sparse information and

potential relationship among aspects of the dataset

can get across to people clearly and effectively.

Data visualization needs to maintain a balance

between being both functional and aesthetic so that

meaningful insights into a rather complex dataset

can get conveyed in a more intuitive way [5]. In

(Figure 3) and (Figure 4), we exemplify several

useful cases of data visualization.

(Figure 3) [6] maps 245 top-level domain coun-

try codes. Each two-digit code is aligned over that

country it represents and is sized relative to the

population of the country or territory. The below

legend provides color coded quick reference. The

map is a helpful resource for managers of global

web sites or global marketing executives.

(Figure 4) [7] plots Hurricane Sandy data on a

slice of the US. In the figure we are able to watch

Sandy’s past trace and also a forecast for its future

activity and the affected area. The figure is

informative in terms of conveying important data

about Sandy and is intuitively understandable to

(Figure 3) Country codes of the world

이두호 외 / R 프로그래밍: 통계 계산과 데이터 시각화를 위한 환경 47

ordinary people.

Ⅵ. Producing Graphics in R

R is rich with facilities for creating and developing

interesting graphics [8]. From an overview, there

are four major graphic packages in R: they are

base, grid, lattice, and ggplot2. The base

package contains functionality for many plot types

and lattice and grid are supplied with R’s

recommended packages and are included in every

binary distribution. R’s base graphic system reaches

to its limit when one wants to design complex

layouts and grid was designed to overcome some

of these limitations. Using grid as the underlying

primitives, packages like lattice and ggplot2 are

developed. Subsequent part of this paper will put

emphasis on the study of ggplot2 since it is very

powerful in producing statistical or data graphics

due to a deep underlying grammar.

1. The Grammar of Graphics in ggplot2

The theoretical basis of ggplot2 is the layered

grammar of graphics. Grasping the grammar is very

useful for both users and developers. To the user,

the grammar suggests the high-level aspects of a

plot that can be changed to customize graphics to

particular problems: to the developer, it is much

easier to add new capabilities to ggplot2.

The layered grammar defines a plot as the com-

bination of [9]:

• A default dataset and the set of mappings from

variables to aesthetics.

• One or more layers

• A coordinate system

• The faceting specification

The visuality of a plot is rendered by points. To

display a point on the screen, the computer needs to

know the aesthetic specifications of the point which

include color, size, shape and many others. As well

as aesthetics that have been mapped to variables,

they can also be specified constant. The coordinate

system controls how the axes and grid lines are

drawn in the plot. The faceting specification creates

small multiples each showing a different subset of

the whole dataset.

Layering is the mechanism by which additional

data elements are added to a plot. There are five

components of a layer [9]:

• The data. It must be an R data frame.

• A set of aesthetic mappings. This describes

how variables in the data are mapped to aes-

thetic properties of the layer.

• The geom. It defines the set of available

aesthetic properties of the layer.

• The stat. It transforms the raw data in some

useful way and returns a data frame with new

(Figure 4) Path & cone of Hurricane Sandy in R.

48 전자통신동향분석 제28권 제1호 2013년 2월

variables that can also be mapped to aesthet-

ics.

• The position adjustment. It adjusts elements to

avoid overplotting.

Each layer can convey a different dataset and

have a different aesthetic mapping. The geoms

actually perform the rendering of the data and

control the appearance of the plot that we create.

Each geom has a set of aesthetics that it under-

stands and a set that are required for drawing. The

names of generated variables by stat must be

surrounded with “..” in their later usage instances, in

order to prevent confusion with the same name in

the original dataset. Every stat is associated with a

default geom and every geom with a default stat

which means that we only need to specify one of

stat or geom to get a completely specified layer.

2. The Usage Examples of ggplot2

Each plot of some dataset actually can be created

by many different ways, such as by using commer-

cial statistical packages, or by using the free open-

source statistical packages, or by using base R plus

self-defined functions. In ggplot2, likewise, we

may use the function qplot() to create a simple yet

expressive plot all at one line, and we may also use

the function ggplot() to create the plot layer by

layer. ggplot() allows users to create plots that

could not be made using qplot(), because qplot()

permits only a single dataset and a single set of

aesthetic mappings. Moreover, layers are R objects

and can be stored as variables, which is convenient

for further enhancement and flexible for reutiliza-

tion. In following examples, we explain how to

generate a graphic by using the provided functions

in ggplot2 and how to realize data visualization by

combining ggplot() with other packages.

a. Example of Using qplot() and ggplot()

For one of the available data frames named

“diamonds” in the package of ggplot2, the below

three sets commands generate the same plot as

shown in (Figure 5).

qplot(carat, ..density.., data = diamonds, geom = "histo-

gram", binwidth=0.1)

ggplot(diamonds, aes(carat)) + geom_histogram(aes(y

= ..density..), binwidth=0.1)

ggplot(diamonds, aes(carat)) + stat_bin(aes(y = ..density..),

binwidth = 0.1)

By comparing the first and second sets of com-

mands, we can see that in generating the same easy

plot, qplot() implements the command all at one

line while ggplot() builds the plot according to the

layering mechanism. By comparing the second and

the third sets of commands, we can see that by

using the default associations we specify either

(Figure 5) The Density of diamonds’ weight distribution.

이두호 외 / R 프로그래밍: 통계 계산과 데이터 시각화를 위한 환경 49

geom or stat to render a complete layer. Since the

“density” is generated variable and not belong to

the original data frame, we need to surround it with

“..”.

b. Encoding Two-dimensional Density in Graph-

ical Variables [10]

In this example, we first create a sample dataset

distributing in two-dimensions, and then we cluster

the data points and try to express the estimate of

the data’s density over the space. After getting the

data to be visualized prepared in “myData” we

sequentially execute the below commands to render

the plot. We save the intermediate plot as an R

object named zp4 and add modifications to it step

by step.

zp4 <- ggplot(myData, aes(x = X, y = Y))

zp4 <- zp4 + stat_density2d(aes(fill = Cluster, colour =

Cluster, alpha = ..level.., size =..level..), geom = "polygon")

If we print zp4 till this step we will get the plot

shown in (Figure 6). The created sample data points

are clustered into seven clusters and are rendered

in different colors. The two-dimensional density

estimation of the sample data points is rendered by

polygons, where alpha and size are both mapped

to the computed two-dimensional density estimate.

alpha is the aesthetic deciding the transparency of

a color and size is the aesthetic for the width of

lines. Therefore, the area with darker color and

thicker line indicates the space with higher density

estimate and the area with transparent color and

thinner line means the space with lower density

estimate.

zp4 <- zp4 + scale_alpha(range = c(0, 1/2), guide = "none")

If we print zp4 till this step we will get the plot

shown in (Figure 7). By using the function

scale_alpha(), we narrow down the alpha range

from (0,1) to (0,1/2).

zp4 <- zp4 + scale_size(range = c(0, 3/2), guide = "none")

If we print zp4 till this step we will get the plot

shown in (Figure 8). By using the function

(Figure 6) Two-dimensional density represented in space.

(Figure 7) Two-dimensional density represented in space

with scaled transparency.

50 전자통신동향분석 제28권 제1호 2013년 2월

scale_size(), we narrow down the size range to

(0,3/2).

We can infer from the above plotting procedures

that the functions implementing the grammar of

graphics in ggplot2 can provide flexible and

versatile methods to compose functional and

beautiful graphics.

c. Data Visualization with ggplot() and Other

Package-Matching the Identifiers between

our Data and the Map Data [11]

We install the “maps” package and use the

datasets come within it. By using map_data()

function in ggplot2, we can convert a map into map

data in the form of data frame. Then, by using

merge() we can merge the map data with the data

we have surveyed such as the number of assaults

happened in each state to produce a choropleth

map. The detail R codes can be found in [11] and

running the codes will render plots similar to the

one shown in (Figure 9).

From (Figure 9), we visualize the surveyed data

on assault cases in the US and match that to the

map data. Through such data visualization it is easy

for us to have a first impression of which parts of

the US are safer than other parts in terms of lower

possibility for the occurrence of assault.

Ⅶ. Working with Large Datasets

This paper aimed at introducing R language and

investigating its application in the data visualization.

This paper now ends by discussing the analysis of

large datasets in R.

As stated earlier, R holds all of its objects in

virtual memory. For most of users, this design

decision has led to a zippy interactive experience,

but for analysts working with large datasets, it can

lead to slow program execution and memory-

related errors. Memory limits will mainly depend on

the R build (32 vs. 64-bit) and for 32-bit Windows,

on the OS version involved. Error messages starting

with cannot allocate vector of size typically

indicate a failure to obtain sufficient contiguous

memory, while error messages starting with

cannot allocate vector of length indicate that

an address limit has been executed. When working

with large datasets, it is recommended to use a 64-

(Figure 8) Two-dimensional density represented in space

with scaled transparency and line width.

(Figure 9) Choropleth map reflecting number of assaults in

the US.

이두호 외 / R 프로그래밍: 통계 계산과 데이터 시각화를 위한 환경 51

bit build if at all possible. For all builds, the number

of elements in a vector is limited to 2,147,483,647

(see ?Memory for more information).

There are three issues to consider when working

with large datasets: (i) efficient programming to

speed execution, (ii) storing data externally to limit

memory issues, and (iii) using specialized statistical

packages designed to efficiently analyze massive

amounts of data.

There are many programming tips to improve

performance when working with large datasets.

Those tips include vectorizing calculations, using

matrices rather than data frames, testing programs

on subsets of the large dataset, and deleting

temporary objects that are no longer needed. With

large datasets, increasing code efficiency will only

get users so far. When bumping up against memory

limits, objects can be stored externally or spe-

cialized package for large datasets can be used.

There are several packages available for storing

objects outside of R’s main memory. This strategy

involves storing objects or data in external database

(DB) or in binary flat files on disk, and then access-

ing portions as they are needed. Useful R packages

for solving memory problems include ff, bigme-

mory, biganalytics, filehash, ncdf, RODBC,

RMySQL, ROracle, and RSQLite.

Working with datasets in the gigabyte to terabyte

range should be challenging in any language. For

more information on the method available within R,

see the CRAN Task View: High-Performance and

Parallel Computing with R in [12].

Abbreviations

ANOVA Analysis Of Variance

DB Database

CRAN Comprehensive R Archive Network

GNU GNU is Not Unix

SAS Statistical Analysis System

SPSS Statistical Package for Social Science

References

[1] R. Ihaka and R. Gentleman, “R: a Language for Data

Analysis and Graphics,” J. Comput. Graph. Stat., vol.

5, no. 3, 1996, pp. 299-314.

[2] S-Plus and R Statistics Software. http://stat.ethz.ch/~

www/SandR.html

[3] http://cran.r-project.org

[4] N. Matloff, The Art of R Programming, No Starch

Press, 2011.

[5] V. Friedman, “Data Visualization and Infographics,”

Graphics, Monday Inspiration, Jan. 14th, 2008.

http://www.smashingmagazine.com/2008/01/14/mon

day-inspiration-data-visualization-and-infographics/

[6] http://www.historyshots.com/OtherArtists/4015.cfm

[7] https://github.com/hrbrmstr/sandy

[8] CRAN, “CRAN Task View: Graphic Display &

Dynamic Graphics & Graphic Devices & Visualiza-

tion,” Dec. 13th, 2012. http://cran.r-project.org/web/

views/Graphics.html

[9] H. Wickham, ggplot2 Elegant Graphics for Data

Analysis, Springer Science+Business Media, LLC,

2009, pp. 27-41.

[10] http://www.r-bloggers.com/representing-density-in-

two-dimensions/

[11] Hadley Wickham, ggplot2 Elegant Graphics for Data

Analysis, Springer Science+Business Media, LLC,

2009, pp 78-79.

[12] http://cran.r-project.org/web/views

Open source software (OSS) The computer software that is

available with source code: by using an open source license

the copyright holders provide source codes and the rights to
study, change and distribute the software to anyone and for
any purpose.

Data visualization The study of the visual representation of
data, meaning “information that has been abstracted in some
schematic form, including attributes or variables for the units
of information”

Terminology

