References
- Wataha JC. Biocompatibility of dental casting alloys: a review. J Prosthet Dent 2000;83:223-34. https://doi.org/10.1016/S0022-3913(00)80016-5
- Pretti M, Hilgert E, Bottino MA, Avelar RP. Evaluation of the shear bond strength of the union between two CoCralloys and a dental ceramic. J Appl Oral Sci 2004;12:280-4.
- Grimaudo NJ. Biocompatibility of nickel and cobalt dental alloys. Gen Dent 2001;49:498-503.
- Dobrzański LA, Reimann L. Influence of Cr and Co on hardness and corrosion resistance CoCrMo alloys used on dentures. J Achieve Mater Manuf Eng 2011;49:193-9.
- Karpuschewski B, Pieper HJ, Krause M, Döring J. In: Schuh G, Neugebauer R, Uhlmann E, eds. Future trends in production engineering (Proceedings of the first conference of the German Academic Society for production engineering. Berlin, Germany, 8th-9th June 2011, 1st ed. Springer, New York; 2013.
- Fasbinder D. Using digital technology to enhance restorative dentistry. Compend Contin Educ Dent 2012;33:666-8.
- Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009;28: 44-56. https://doi.org/10.4012/dmj.28.44
- Aboushelib MN, Elmahy WA, Ghazy MH. Internal adaptation, marginal accuracy and microleakage of a pressable versus a machinable ceramic laminate veneers. J Dent 2012;40: 670-7. https://doi.org/10.1016/j.jdent.2012.04.019
- Figliuzzi M, Mangano F, Mangano C. A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology. Int J Oral Maxillofac Surg 2012;41:858-62. https://doi.org/10.1016/j.ijom.2012.01.014
- Jevremovic D, Puskar T, Kosec B, Vukelic D, Budak I, Aleksandrovic S, Egbeer D, Williams R. The analysis of the mechanical properties of F75 Co-Cr alloy for use in selective laser melting (SLM) manufacturing of removable partial dentures (RPD). Metal 2012;51:171-4.
- Hollander DA, von Walter M, Wirtz T, Sellei R, Schmidt- Rohlfing B, Paar O, Erli HJ. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials 2006;27:955-63. https://doi.org/10.1016/j.biomaterials.2005.07.041
- Rodrigues WC, Broilo LR, Schaeffer L, Knörnschild G, Espinoza FRM. Powder metallurgical processing of Co- 28%Cr-6%Mo for dental implants: Physical, mechanical and electrochemical properties. Powder Tech 2011;206:233-8. https://doi.org/10.1016/j.powtec.2010.09.024
- Bauer JR, Grande RH, Rodrigues-Filho LE, Pinto MM, Loguercio AD. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys? Braz Oral Res 2012;26:190-6. https://doi.org/10.1590/S1806-83242012000300002
- Gill P, Munroe N, Pulletikurthi C, Pandya S, Haider W. Effect of Manufacturing Process on the Biocompatibility and Mechanical Properties of Ti-30Ta Alloy. J Mater Eng Perform 2011;20:819-823. https://doi.org/10.1007/s11665-011-9874-7
- Manfredi D, Calignano F, Krishnan M, Canali R, Ambrosio EP, Atzeni E. From powders to dense metal parts: Characterization of a commercial AlSiMg alloy processed through direct metal laser sintering. Materials 2013;6:856-69. https://doi.org/10.3390/ma6030856
- Tandon R. In: Disegi JA, Kennedy RL, Pilliar R, eds. Cobalt Base Alloys for Biomedical Applications ASTM STP 1365. American Society for Testing and Materials, West Conshohocken, PA, 1999.
- Bolzoni L, Esteban PG, Ruiz-Navas EM, Gordo E. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders. J Mech Behav Biomed Mater 2012;15:33-45. https://doi.org/10.1016/j.jmbbm.2012.05.019
- Lohfeld S, McHugh PE. Laser sintering for the fabrication of tissue engineering scaffolds. Methods Mol Biol 2012;868:303-10. https://doi.org/10.1007/978-1-61779-764-4_18
- Castillo-de-Oyagüe R, Sánchez-Turrión A, López-Lozano JF, Albaladejo A, Torres-Lagares D, Montero J, Suárez-García MJ. Vertical misfit of laser-sintered and vacuum-cast implantsupported crowncopings luted with definitive and temporary luting agents. Med Oral Patol Oral Cir Bucal 2012;17:e610-7.
- Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 2008;24:1525-33. https://doi.org/10.1016/j.dental.2008.03.029
- Girardin E, Renghini C, Dyson J, Calbucci V, Moroncini F, Albertini G. Characterization of porosity in a laser sintered MMCp using X-ray synchrotron phase contrast microtomography. Mater Sci Appl 2011;2:1322-30.
- Gaytan SM, Murr LE, Martinez E, Martinez JL, Machado BI, Ramirez DA, Medina F, Collins S, Wicker RB. Comparison of Microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall Mater Trans A 2010;41:3216-27. https://doi.org/10.1007/s11661-010-0388-y
- Chen CL, Tatlock GJ, Jones AR. Effect of annealing temperatures on the secondary re-crystallization of extruded PM2000 steel bar. J Microsc 2009;233:474-81. https://doi.org/10.1111/j.1365-2818.2009.03134.x
- Guo WH, Brantley WA, Li D, Clark WA, Monaghan P, Heshmati RH. Annealing study of palladium-silver dental alloys: Vickers hardness measurements and SEM microstructural observations. J Mater Sci Mater Med 2007;18:111-8.
- Porod G. In: Glatter O, Kratky O, eds. Small angel X-ray scattering. Academic Press Inc, London, UK, 1982.
- Martin JE, Hurd AJ. Scattering from fractals. J Appl Crystallogr 1987;20:61-78. https://doi.org/10.1107/S0021889887087107
- EN ISO 18265: 2005, Metallic materials - Conversion of hardness values.
- Bezzon OL, Ribeiro RF, Rollo JM, Crosara S. Castability and resistance of ceramometal bonding in Ni-Cr and Ni-Cr-Be alloys. J Prosthet Dent 2001;85:299-304. https://doi.org/10.1067/mpr.2001.113779
- Kern M, Thompson VP. Durability of resin bonds to a cobalt- chromium alloy. J Dent 1995;23:47-54. https://doi.org/10.1016/0300-5712(95)90660-A
- Wataha JC, Lockwood PE. Release of elements from dental casting alloys into cell-culture medium over 10 months. Dent Mater 1998;14:158-63. https://doi.org/10.1016/S0109-5641(98)00023-2
- Wataha JC, Nelson SK, Lockwood PE. Elemental release from dental casting alloys into biological media with and without protein. Dent Mater 2001;17:409-14. https://doi.org/10.1016/S0109-5641(00)00099-3
- Liu R, Xi SQ, Kapoor S, Wu XJ. Effects of chemical composition on solidification, microstructure and hardness of Co- Cr-W-Ni and Co-Cr-Mo-Ni alloy systems. Int J Res Rev Appl Sci 2010;5:110-22.
- Iseri U, Ozkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J 2011;30:274-80. https://doi.org/10.4012/dmj.2010-101
- ASM Handbook Vol. 4, Heat Treating. ASM International, Ohio, 1991.
- Tani T, Udoh K, Yasuda K, Van Tendeloo G, Van Landuyt J. Age-hardening mechanisms in a commercial dental gold alloy containing platinum and palladium. J Dent Res 1991;70: 1350-7. https://doi.org/10.1177/00220345910700100701
- Kim HI, Lee DH, Sim JS, Kwon YH, Seol HJ. Age-hardening by miscibility limit of Au-Pt and Ag-Cu systems in an Au- Ag-Cu-Pt alloy. Mater Character 2009;60:357-62. https://doi.org/10.1016/j.matchar.2008.10.001
- Nomura N, Abe M, Kawamura A, Fujinuma S, Chiba A, Masahashi N, Hanada S. Fabrication and mechanical properties of porous Co-Cr-Mo alloy compacts without Ni addition. Mater Trans 2006;47:283-6. https://doi.org/10.2320/matertrans.47.283
- Telu S, Patra A, Sankaranarayana M, Mitra R, Pabi SK. Microstructure and cyclic oxidation behavior of W-Cr alloys prepared by sintering of mechanically alloyed nanocrystalline powders. Int J Refract Met Hard Mater 2013;36:191-203. https://doi.org/10.1016/j.ijrmhm.2012.08.015
- Mackert JR Jr, Ringle RD, Fairhurst CW. High-temperature behavior of a Pd-Ag alloy for porcelain. J Dent Res 1983;62: 1229-35. https://doi.org/10.1177/00220345830620121201
- McGinley EL, Coleman DC, Moran GP, Fleming GJ. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy. Dent Mater 2011;27: 637-50. https://doi.org/10.1016/j.dental.2011.03.004
Cited by
- Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs vol.34, pp.3, 2015, https://doi.org/10.1002/jor.23075
- Mechanical and interfacial characterization of laser welded Co-Cr alloy with different joint configurations vol.7, pp.1, 2015, https://doi.org/10.4047/jap.2015.7.1.39
- Main factors affecting the structure and properties of titanium and cobalt alloys manufactured by the 3D printing vol.1115, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1115/4/042008
- Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications vol.16, pp.2, 2018, https://doi.org/10.5301/jabfm.5000371
- Comparative Analysis of Mechanical Properties and Metal-Ceramic Bond Strength of Co-Cr Dental Alloy Fabricated by Different Manufacturing Processes vol.11, pp.10, 2018, https://doi.org/10.3390/ma11101801
- A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance vol.6, pp.6, 2018, https://doi.org/10.1039/C8BM00021B
- What is the changing frequency of diamond burs? vol.10, pp.2, 2018, https://doi.org/10.4047/jap.2018.10.2.93
- Review of selective laser melting: Materials and applications vol.2, pp.4, 2013, https://doi.org/10.1063/1.4935926
- Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS vol.119, pp.21, 2013, https://doi.org/10.1063/1.4953352
- Direct metal laser sintering 방식을 이용하여 제작한 다양한 고정성 보철물 수복 증례 vol.32, pp.3, 2013, https://doi.org/10.14368/jdras.2016.32.3.246
- Effect of Four Manufacturing Techniques (Casting, Laser Directed Energy Deposition, Milling and Selective Laser Melting) on Microstructural, Mechanical and Electrochemical Properties of Co-Cr Dental A vol.10, pp.10, 2013, https://doi.org/10.3390/met10101291
- Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: a review vol.25, pp.1, 2013, https://doi.org/10.1080/10910344.2020.1855649
- Dental Co-Cr alloys fabricated by selective laser melting: A review article vol.59, pp.2, 2013, https://doi.org/10.4047/jkap.2021.59.2.248
- 3D printing in biomedical engineering: Processes, materials, and applications vol.8, pp.2, 2021, https://doi.org/10.1063/5.0024177
- A review on current additive manufacturing technologies and materials used for fabrication of metal-ceramic fixed dental prosthesis vol.35, pp.23, 2021, https://doi.org/10.1080/01694243.2021.1899699