DOI QR코드

DOI QR Code

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part I: Formulation and characteristics of the methods

  • Rezaiee-Pajand, M. (Department of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad) ;
  • Ghalishooyan, M. (Department of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad) ;
  • Salehi-Ahmadabad, M. (Department of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad)
  • Received : 2012.08.26
  • Accepted : 2013.11.09
  • Published : 2013.12.25

Abstract

This paper consists of two parts, which broadly examines solution techniques abilities for the structures with geometrical nonlinear behavior. In part I of the article, formulations of several well-known approaches will be presented. These solution strategies include different groups, such as: residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control, modified normal flow, and three-parameter ellipsoidal, hyperbolic, and polynomial schemes. For better understanding and easier application of the solution techniques, a consistent mathematical notation is employed in all formulations for correction and predictor steps. Moreover, other features of these approaches and their algorithms will be investigated. Common methods of determining the amount and sign of load factor increment in the predictor step and choosing the correct root in predictor and corrector step will be reviewed. The way that these features are determined is very important for tracing of the structural equilibrium path. In the second part of article, robustness and efficiency of the solution schemes will be comprehensively evaluated by performing numerical analyses.

Keywords

References

  1. Aitken, A.C. (1937), "The evaluation of the latent roots and latent vectors of a matrix", Proc. Roy. Sot. Edinburgh, 57, 269-304.
  2. Allgower, E.L. and Georg, K. (1980), "Homotopy methods for approximating several solutions to nonlinear systems of equations", Numerical solution of highly nonlinear problems, Ed. Forster, W., North-Holland, Amsterdam, The Netherlands.
  3. Argyris, J.H. (1965), "Continua and discontinua", Proceedings of First Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio.
  4. Batoz, J.L. and Dhatt, G. (1979), "Incremental displacement algorithms for nonlinear problems", Int. J. Num. Meth. Eng., 14(8), 1262-1267. https://doi.org/10.1002/nme.1620140811
  5. Bathe, K.J. and Dvorkin, E.N. (1983), "On the automatic solution of nonlinear finite element equations", Comput. Struct., 17(5-6), 871-879. https://doi.org/10.1016/0045-7949(83)90101-3
  6. Bellini, P.X. and Chulya, A. (1987), "An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations", Comput. Struct., 26(1-2), 99-110. https://doi.org/10.1016/0045-7949(87)90240-9
  7. Bergan, P.G. (1980), "Solution algorithms for nonlinear structural problems", Comput. Struct., 12(4), 497-509. https://doi.org/10.1016/0045-7949(80)90125-X
  8. Bergan, P.G. and Clough, R.W. (1972), "Convergence criteria for iterative processes", AIAA J., 10(8), 1107-1108. https://doi.org/10.2514/3.50313
  9. Bergan, P.G., Horrigmoe, G., Brakeland, B. and Soreide, T.H. (1978), "Solution techniques for non-linear finite element problems", Int. J. Num. Meth. Eng., 12(11), 1677-1696. https://doi.org/10.1002/nme.1620121106
  10. Bergan, P.G. and Soreide, T.H. (1978), "Solution of large displacement and instability problems using the current stiffness parameters", Finite Elem. Nonlin. Mech., Eds. Bergan P.G. et al., Tapir Publishers, 2, 647-669.
  11. Boyle, E.F. and Jennings, A. (1973), "Accelerating the convergence of elastic-plastic stress analysis", Int. J. Num. Meth. Eng., 7(2), 232-235. https://doi.org/10.1002/nme.1620070214
  12. Cardoso, E.L. and Fonseca, J.S.O. (2007), "The GDC method as an orthogonal arc-length method", Commun. Num. Meth. Eng., 23(4), 263-271.
  13. Carrera, E. (1994), "A study on arc-length-type methods and their operation failures illustrated by a simple model", Comput. Struct., 50(2), 217-229.
  14. Chan, S.L. (1988), "Geometric and material non-linear analysis of beam-columns and frames using the minimum residual displacement method", Int. J. Num. Meth. Eng., 26(12), 2657-2669. https://doi.org/10.1002/nme.1620261206
  15. Chen, H. and Blandford, G.E. (1993), "Work-increment-control method for non-linear analysis", Int. J. Num. Meth. Eng, 36(6), 909-930. https://doi.org/10.1002/nme.1620360603
  16. Clarke, M.J. and Hancock, G.J. (1990), "A study of incremental-iterative strategies for non-linear analyses", Int. J. Num. Meth. Eng, 29(7), 1365-1391. https://doi.org/10.1002/nme.1620290702
  17. Crisfield, M.A. (1981), "A fast incremental/iterative solution procedure that handles snap-through", Comput. Struct., 13(1-3), 55-62. https://doi.org/10.1016/0045-7949(81)90108-5
  18. Crisfield, M.A. (1982), Numerical Analysis of Structures, Eds. Rhodes, J. and Walker, A.C., Developments in Thin-Walled Structures-1, Applied Science, London.
  19. Crisfield, M.A. (1983), "An arc-length method including line searches and accelerations" Int. J. Num. Meth. Eng, 19(9), 1269-1289. https://doi.org/10.1002/nme.1620190902
  20. de Souza Neto, E.A. and Feng, Y.T. (1999), "On the determination of the path direction for arc-length methods in the presence of bifurcations and snap-backs", Comput. Meth. Appl. Mech. Eng., 179(1-2), 81-89. https://doi.org/10.1016/S0045-7825(99)00042-0
  21. Felippa, C.A. (1999), Nonlinear Finite Element Methods, ASEN 5107.
  22. Feng, Y.T., Peric, D. and Owen, D.R.J. (1995), "Determination of travel directions in path-following methods", Math. Comput. Modell., 21, 43-59.
  23. Feng, Y.T., Peric, D. and Owen, D.R.J. (1996), "A new criterion for determination of initial loading parameter in arc-length methods", Comput. Struct., 58(3), 479-485. https://doi.org/10.1016/0045-7949(95)00168-G
  24. Forde, B.W.R. and Stiemer, S.F. (1987), "Improved arc length orthogonality methods for nonlinear finite element analysis", Comput. Struct., 27(5), 625-630. https://doi.org/10.1016/0045-7949(87)90078-2
  25. Fujii, F. and Ramm, E. (1997), "Computational bifurcation theory: path-tracing, pinpointing and path-switching", Eng. Struct., 19(5), 385-392. https://doi.org/10.1016/S0141-0296(96)00094-6
  26. Gorgun, H. and Yilmaz, S. (2012), "Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations", Struct. Eng. Mech., 44(4), 539-569. https://doi.org/10.12989/sem.2012.44.4.539
  27. Greco, M., Menin, R.C.G., Ferreira, I.P. and Baros, F.B. (2012), "Comparison between two geometrical nonlinear methods for truss analyses", Struct. Eng. Mech., 41(6), 735-750. https://doi.org/10.12989/sem.2012.41.6.735
  28. Hellweg, H.B. and Crisfield, M.A. (1998), "A new arc-length method for handling sharp snap-backs", Comput. Struct., 66(5), 704-709. https://doi.org/10.1016/S0045-7949(97)00077-1
  29. Hinton, E., Owen, D.R.J. and Taylor, C. (1982), Recent Advances in Non-Linear Computational Mechanics, Pineridge Press Limited.
  30. Hrinda, G.A. (2007), "Geometrically nonlinear static analysis of 3D trusses using the arc-length method", Computational Methods and Experimental Measurements XIII, Prague, Czech Republic, 243-252.
  31. Irons, B.M. and Tuck, R.C. (1969), "A version of the Aitken accelerator for computer iteration", Int. J. Num. Meth. Eng., 1(3), 275-277. https://doi.org/10.1002/nme.1620010306
  32. Kim, J.H. and Kim, Y.H. (2001), "A predictor-corrector method for structural nonlinear analysis", Comput. Meth. Appl. Mech. Eng., 191(8-10), 959-974. https://doi.org/10.1016/S0045-7825(01)00296-1
  33. Krenk, S. and Hededal, O. (1995), "A dual orthogonality procedure for non-linear finite element equations", Comput. Meth. Appl. Mech. Eng., 123(1-4), 95-107. https://doi.org/10.1016/0045-7825(95)00779-Z
  34. Krishnamoorthy, C.S., Ramesh, G. and Dinesh, K.U. (1996), "Post-buckling analysis of structures by three-parameter constrained solution techniques", Finite Elem. Anal. Des., 22(2), 109-142. https://doi.org/10.1016/0168-874X(96)00046-7
  35. Kuo, S.R. and Yang, Y.B. (1995), "Tracing postbuckling paths of structures containing multi-loops", Int. J. Num. Meth. Eng., 38(23), 4053-4075. https://doi.org/10.1002/nme.1620382309
  36. Leahu-Aluas, I. and Abed-Meraim, F. (2011), "A proposed set of popular limit-point buckling benchmark problems", Struct. Eng. Mech., 38(6), 767-802. https://doi.org/10.12989/sem.2011.38.6.767
  37. Ligaro, S.S. and Valvo, P.S. (2006), "Large displacement analysis of elastic pyramidal trusses", Int. J. Solid. Struct., 43(16), 4867-4887. https://doi.org/10.1016/j.ijsolstr.2005.06.100
  38. Meek, J.L. and Tan, H.S. (1984), "Geometrically nonlinear analysis of space frames by an incremental iterative technique", Comput. Meth. Appl. Mech. Eng., 47(3), 261-282. https://doi.org/10.1016/0045-7825(84)90079-3
  39. Memon, B.A. and Su, X. (2004), "Arc-length technique for nonlinear finite element analysis", J. Zhejiang Univ., Sci., 5(5), 618-628. https://doi.org/10.1631/jzus.2004.0618
  40. Pian, T.H.H. and Tong, P. (1971), "Variational formulation of finite displacement analysis", Proceedings of IUTAM Symposium on High Speed Computing of Elastic Structures, Ed. B.F. de Veubeke, University of Liege, Liege, Belgium, 43-63.
  41. Powell, G. and Simons, J. (1981), "Improved iteration strategy for nonlinear structures", Int. J. Num. Meth. Eng., 17(10), 1455-1467. https://doi.org/10.1002/nme.1620171003
  42. Ragon, S.A., Gurdal, Z. and Watson, L.T. (2002), "A comparison of three algorithms for tracing nonlinear equilibrium paths of structural systems", Int. J. Solid. Struct., 39(3), 689-698. https://doi.org/10.1016/S0020-7683(01)00195-0
  43. Ramm, E. (1981), "Strategies for tracing the nonlinear response near limit points", Nonlinear Finite Element Analysis in Structural Mechanics, Eds. Wunderlich, W., Stein, E. and Bathe, K.J., Springer, Berlin.
  44. Rezaiee-Pajand, M. and Akhaveysi, A.H. (2000), "Ellipsoidal arc length method", Proceedings of 5th International Conference on Civil Engineering, Ferdowsi University, Mashhad, Iran, May, 2, 402-410. (in Persian)
  45. Rezaiee-Pajand, M. and Boroshaki, F. (1999), "A variable arc-length method", Asian J. Struct. Eng., 3, 21-44.
  46. Rezaiee-Pajand, M. and Tatar, M. (2005), "Modified arc length method for nonlinear structural analysis", Technical and Engineering Journal of Shahid Chamran University, Ahvaz, Iran, 5, 71-86. (in Persian)
  47. Rezaiee-Pajand, M. and Tatar, M. (2006), "Some orthogonal methods for geometrically nonlinear analysis", Int. J. Engineering Science of Elmo Sanat University, Tehran, Iran, 17, 35-41. (in Persian)
  48. Rezaiee-Pajand, M. and Tatar, M. (2009), "Solving nonlinear equations of finite element by minimization of residual factors", Technical and Engineering Journal of Modares, Tarbiat Modares University, Tehran, Iran, 35, 17-28. (in Persian)
  49. Rezaiee-Pajand, M., Tatar, M. and Moghaddasie, B. (2009), "Some geometrical bases for incremental-iterative methods", Int. J. Eng., Tran. B: Appl., 22(3), 245-256.
  50. Richard Liew, J.Y., Punniyakotty, N.M. and Shanmugam, N.E. (1997), "Advanced analysis and design of spatial structures", J. Constr. Steel Res., 42(1), 21-48. https://doi.org/10.1016/S0143-974X(97)00005-9
  51. Riks, E. (1972), "The application of Newton's method to the problem of elastic stability", J. Appl. Mech., 39(4), 1060. https://doi.org/10.1115/1.3422829
  52. Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems", Int. J. Solid. Struct., 15, 529-551. https://doi.org/10.1016/0020-7683(79)90081-7
  53. Ritto-Correa, M. and Camotim, D. (2008), "On the arc-length and other quadratic control methods: Established, less known and new implementation procedures", Comput. Struct., 86(11-12), 1353-1368. https://doi.org/10.1016/j.compstruc.2007.08.003
  54. Saffari, H., Fadaee, M.J. and Tabatabaei, R. (2008), "Nonlinear analysis of space trusses using modified normal flow algorithm", J. Struct. Eng., 134(6), 998-1005. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(998)
  55. Saffari, H. and Mansouri, I. (2011), "Non-linear analysis of structures using two-point method", Int. J. Nonlin. Mech., 46(6), 834-840. https://doi.org/10.1016/j.ijnonlinmec.2011.03.008
  56. Schweizerhof, K.H. and Wriggers, P. (1986), "Consistent linearization for path following methods in nonlinear FE analysis", Comput. Meth. Appl. Mech. Eng., 59(3), 261-279. https://doi.org/10.1016/0045-7825(86)90001-0
  57. Sousa, C.A.G. and Pimenta, P.M. (2010), "A new parameter to arc-length method in nonlinear structural analysis", Mecanica Computacional, Structural Mechanics, XXIX(17), 1841-1848.
  58. Thai, H.T. and Kim, S.E. (2009), "Large deflection inelastic analysis of space trusses using generalized displacement control method", J. Constr. Steel Res., 65(10-11), 1987-1994. https://doi.org/10.1016/j.jcsr.2009.06.012
  59. Toklu, Y. (2004), "Nonlinear analysis of trusses through energy minimization", Comput. Struct., 82(20-21), 1581-1589. https://doi.org/10.1016/j.compstruc.2004.05.008
  60. Torkamani, M.A.M. and Shieh, J.H. (2011), "Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures", Eng. Struct., 33(12), 3516-3526. https://doi.org/10.1016/j.engstruct.2011.07.015
  61. Torkamani, M.A.M. and Sonmez, M. (2008), "Solution techniques for nonlinear equilibrium equations", 18th Analysis and Computation Specialty Conference, Vancouver, BC, Canada.
  62. Waszczyszyn, Z. (1983), "Numerical problems of nonlinear stability analysis of elastic structures", Comput. Struct., 17(1), 13-24. https://doi.org/10.1016/0045-7949(83)90023-8
  63. Waszczyszyn, Z., Cichon, Cz. and Radwaska, M. (1994), Stability of Structures by Finite Element Methods, Elsevier, Amsterdam.
  64. Watson, L.T., Billups, S.C. and Morgan, A.P. (1987), "Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms", ACM Trans. Math. Softw., 13(3), 281-310. https://doi.org/10.1145/29380.214343
  65. Watson, L.T., Holze, S.M. and Hansen, M.C. (1981), "Tracking nonlinear equilibrium paths by a homotopy method", Technical Report. No. CS81001-R., Virginia Polytechnic Institute and Blacksburg University, 1-21.
  66. Watson, L.T., Sosonkina, M., Melville, R.C., Morgan, A.P. and Walker, H.F. (1997), "Algorithm 777: HOMPACK90: a suite of Fortran 90 codes for globally convergent homotopy algorithms", ACM Trans. Math. Softw, 23(4), 514-549. https://doi.org/10.1145/279232.279235
  67. Wempner, G.A. (1971), "Discrete approximations related to nonlinear theories of solids", Int. J. Solid. Struct., 7(11), 1581-1599. https://doi.org/10.1016/0020-7683(71)90038-2
  68. Yang, Y.B. and Kuo, S.R. (1994), Theory and Analysis of Nonlinear Framed Structures, Singapore, Prentice Hall.
  69. Yang, Y.B., Lin, T.J., Leu, L.J. and Huang, C.W. (2008), "Inelastic postbuckling response of steel trusses under thermal loadings", J. Constr. Steel Res., 64(12), 1394-1407. https://doi.org/10.1016/j.jcsr.2008.01.004
  70. Yang, Y.B. and McGuire, W. (1985), "A work control method for geometrically nonlinear analysis", Proceedings of International Conference on Numerical Methods in Engineering: Theory and Applications, Eds. Middleton, J. and Pande, G.N., University College Swansea, Wales, UK.
  71. Yang, Y.B. and Shieh, M.S. (1990), "Solution method for nonlinear problems with multiple critical points", AIAA J., 28(12), 2110-2116. https://doi.org/10.2514/3.10529
  72. Yang, Y.B., Yau, J.D. and Leu, L.J. (2003), "Recent developments in geometrically nonlinear and postbuckling analysis of framed structures", Appl. Mech. Rev., 56(4), 431. https://doi.org/10.1115/1.1578498
  73. Zhou, Z. and Murray, D.W. (1995), "An incremental solution technique for unstable equilibrium paths of shell structures", Comput. Struct., 55(5), 749-759. https://doi.org/10.1016/0045-7949(94)00474-H
  74. Yang, Z.J. and Proverbs, D. (2004), "A comparative study of numerical solutions to non-linear discrete crack modelling of concrete beams involving sharp snap-back", Eng. Fract. Mech., 71(1), 81-105. https://doi.org/10.1016/S0013-7944(03)00047-X
  75. Zienkiewicz, O.C. (1971), "Incremental displacement in non-linear analysis", Int. J. Num. Meth. Eng., 3(4), 587-588. https://doi.org/10.1002/nme.1620030412
  76. Zienkiewicz, O.C. (1977), The Finite Element Method, the 3rd Edition, McGraw-Hill, London.
  77. Zienkiewicz, O.C. and Taylor, R.L. (2005), The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann.

Cited by

  1. Mixing dynamic relaxation method with load factor and displacement increments vol.168, 2016, https://doi.org/10.1016/j.compstruc.2016.02.011
  2. Computation of Nonunique Solutions for Trusses Undergoing Large Deflections vol.12, pp.03, 2015, https://doi.org/10.1142/S021987621550022X
  3. On the equivalence of dynamic relaxation and the Newton-Raphson method vol.113, pp.9, 2018, https://doi.org/10.1002/nme.5707
  4. Global stability analysis of spatial structures based on Eigen-stiffness and structural Eigen-curve vol.141, 2018, https://doi.org/10.1016/j.jcsr.2017.11.003
  5. Using residual areas for geometrically nonlinear structural analysis vol.105, 2015, https://doi.org/10.1016/j.oceaneng.2015.06.043
  6. An incremental iterative solution procedure without predictor step vol.27, pp.1, 2018, https://doi.org/10.1080/17797179.2018.1455028
  7. Geometrical nonlinear analysis of structures using residual variables vol.47, pp.2, 2019, https://doi.org/10.1080/15397734.2018.1545585
  8. In-plane nonlinear postbuckling analysis of circular arches using absolute nodal coordinate formulation with arc-length method vol.235, pp.3, 2021, https://doi.org/10.1177/1464419320971412
  9. Mining Method Optimization of Gently Inclined and Soft Broken Complex Ore Body Based on AHP and TOPSIS: Taking Miao-Ling Gold Mine of China as an Example vol.13, pp.22, 2013, https://doi.org/10.3390/su132212503