References
- Ahmadi, M.T., Izadinia, M and Bachmann, H. (2001), "A discrete crack joint model for nonlinear dynamic analysis of concrete arcli dam", Int. J. Comput. Struct, 79, 403-420. https://doi.org/10.1016/S0045-7949(00)00148-6
- Aliabadi, M.H. (2002), The Boundary Element Method, John Wiley & Sons, London, UK.
- Banerjee, P.K. (1994), The Boundary Element Methods in Engineering, McGraw-Hill Book Company, London, UK.
- Beer, G. (1993), "An efficient numerical metliod for modelling initiation and propagation of cracks along material interfaces", Internationa Journal for Numerical Methods in Engineering, 36, 3579-3594. https://doi.org/10.1002/nme.1620362102
- Beer, G. and Poulsen, B.A (1994), "Efficient numerical modeling of faulted rock using tlie boundary element metliod", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31(5), 485-506. https://doi.org/10.1016/0148-9062(94)90151-1
- Beer, G., Smith, I. and Duenser, C. (2008), The Boundary Element Method With Programming, Springer-Verlag, Wien, Germany.
- Brebbia, A, Talles, J.C.F and Wrobel, L.C. (1984), Boundary Element Techniques, Springer-Verlog, New York, USA
- Clieng, S. and Shuwei, Z. (2012), "Stocliastic spline fictitious boundary element method in elastostatic problems with random fields", Eng. Anal. Bound Elem., 36(5), 759-771. https://doi.org/10.1016/j.enganabound.2011.11.014
- Deb, A. and Banerjee, P.K. (1990), "BEM for general anisotropic 2D elasticity using particular integrals", Commun. Appl. Numer. Method., 6, 111-119. https://doi.org/10.1002/cnm.1630060207
- Federal Energy Regulation Commission (1999), Chapter 11: Arch Dams, Engineering Guidelines for the Evaluation of Hydropower Projects, Washington D. C, USA.
- Federal Energy Regulation Commission (1991), Chapter 5: Geotechnical Investigations and Studies, Engineering Guidelines for the Evaluation of Hydropower Projects, Washington D.C., USA.
- Khodakarami, M.I. and Kaji, N. (2011), "Analysis of elastostatics problems using a semi-analytical method with diagonal coefficient matrices", Eng Anal. Bound. Elem., 35, 1288-1296. https://doi.org/10.1016/j.enganabound.2011.06.003
- Kuo, H.Y. and Chen, T. (2005), "Steady and transient Green's functions for anisotropic conduction in an exponentially graded solid", Int. J. Solid Struct, 42, 1111-1128. https://doi.org/10.1016/j.ijsolstr.2004.06.060
- Leonel, E.D. and Wilson, S.V. (2011), "Non-linear boundary element formulation applied to contact analysis using tangent operator", Eng. Anal. Bound. Elem., 35, 1237-1247. https://doi.org/10.1016/j.enganabound.2011.06.005
- Leonel, E.D. and Wilson, S.V. (2010a), "Dual boundary element formulation applied to analysis of multifractured domains", Eng Anal. Bound Elem., 34(12), 1092-1099. https://doi.org/10.1016/j.enganabound.2010.06.014
- Leonel, E.D. and Wilson, S.V. (2010b), "Non-linear boundary element formulation with tangent operator to analyse crack propagation", Eng Anal. Bound. Elem., 34, 122-129. https://doi.org/10.1016/j.enganabound.2009.08.005
- Maerten, F. (2010), "Adaptive cross-approximation applied to the solution of system of equations and postprocessing for 3D elastostatic problems using the boundary element method", Eng Anal. Bound. Elem., 34(5),483-491. https://doi.org/10.1016/j.enganabound.2009.10.016
- Milroy, J., Hinduja, S. and Davey, K. (1997), "The elastostatics three-dimensional boundary element method: analytical integration for linear isoparametric triangular elements", Appl. Math. Model., 21, 763-782. https://doi.org/10.1016/S0307-904X(97)00098-X
- Ochiai, Y. and Kobayashi, T. (2000), "Stress analysis with arbitrary body force by triple-reciprocity BEM" Struct. Eng. Mech., 10(4), 393-404. https://doi.org/10.12989/sem.2000.10.4.393
- Park, K.H. (2002), "A BEM formulation for axisymmetric elasticity with arbitrary body force using particular integrals", Int. J. Comput. Struct., 80, 2507-2514. https://doi.org/10.1016/S0045-7949(02)00346-2
- Park, K.H. and Banerjee, P.K. (2002), "Two- and three-dimensional transient thermoelastic analysis by BEM via particular integrals", Int. J. Solid. Struct., 39, 2871-2892. https://doi.org/10.1016/S0020-7683(02)00125-7
- Pereira, A. and Beer, G. (2009), "Interface dynamic stiffness matrix approach for three-dimensional transient multi-region boundary element analysis", Int. J. Numer. Method. Eng., 80, 1463-1495. https://doi.org/10.1002/nme.2680
- Perez-Gavilan, J.J. and Aliabadi, M.H. (2001), "A symmetric galerkin formulation and dual reciprocity for 2D elastostatics", Eng Anal. Bound. Elem., 25, 229-235. https://doi.org/10.1016/S0955-7997(01)00003-0
- Rodriguez-Tembleque, L. and Abascal, R. (2010) "A 3D FEM-BEM rolling contact formulation for unstructured meshes", Int. J. Solid. Struct., 47, 330-353. https://doi.org/10.1016/j.ijsolstr.2009.10.008
- Shen, S.Y. (2011), "An indirect elastostatics boundary element method with analytic bases", Int. J. Comput Struct., 89, 2402-2413. https://doi.org/10.1016/j.compstruc.2011.06.008
- Simpson, R.N., Bordas, S.P.A., Lian, H. and Trevelyan, J. (2013), "An isogeometric boundary element method for elastostatics analysis: 2D implementation aspects", Int J. Comput. Struct., 118, 2-12. https://doi.org/10.1016/j.compstruc.2012.12.021
- Tang, W.C. and Fenner, R.T. (2005), "Analytical integration and exact geometrical representation in the two-dimensional elastostatics boundary element method", Appl. Math. Model. 29, 1073-1099. https://doi.org/10.1016/j.apm.2005.02.011
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory Of Elasticity, 3rd Edition, McGraw-Hill, New York, USA.
Cited by
- Efficient 3D boundary element dynamic analysis of discontinuities vol.50, 2015, https://doi.org/10.1016/j.enganabound.2014.09.006