DOI QR코드

DOI QR Code

개인성향과 협업 필터링을 이용한 개선된 영화 추천 시스템

Improved Movie Recommendation System based-on Personal Propensity and Collaborative Filtering

  • 박두순 (순천향대학교 컴퓨터소프트웨어공학과)
  • 투고 : 2013.09.24
  • 심사 : 2013.10.28
  • 발행 : 2013.11.30

초록

추천 시스템들에 대한 여러 방법들이 연구되고 있다. 개인화와 추천 시스템 중에서 가장 성공적인 방법은 협업 필터링이다. 협업 필터링은 고객들의 프로파일 정보를 기반으로 추천을 하므로 데이터가 충분하지 않다면 항목을 추천하는데 있어서 희박성의 문제가 제기된다. 본 연구에서는 희박성의 문제를 해결하는 방법으로 가중치를 가진 개인 성향을 협업 필터링에 활용하는 방법을 제안한다. 본 연구에서 가중치를 가진 최적의 개인 성향을 찾기 위해 공개 데이터인 MovieLens Data를 이용하여 성능 평가하였다. 실험 결과 본 연구에서 제안한 가중치를 가진 개인 성향들로 구축된 시스템이 기존의 개인 성향들을 이용한 시스템보다 향상된 성능을 보였다.

Several approaches to recommendation systems have been studied. One of the most successful technologies for building personalization and recommendation systems is collaborative filtering, which is a technique that provides a process of filtering customer information based on such information profiles. Collaborative filtering systems, however, have a sparsity if there is not enough data to recommend. In this paper, we suggest a movie recommendation system, based on the weighted personal propensity and the collaborating filtering system, in order to provide a solution to such sparsity. Furthermore, we assess the system's applicability by using the open database MovieLens, and present a weighted personal propensity framework for improvement in the performance of recommender systems. We successfully come up with a movie recommendation system through the optimal personalization factors.

키워드

참고문헌

  1. J. Lee, S. Park, "Performance Improvement of a Movie Recommendation System using Genre-wise Collaborative Filtering," Journal of Intelligence Information Systems, Vol.13, No.4, pp.65-78, 2007.
  2. Xiaoyuan Su and Taghi M. Khoshgoftaar, "A Survey of Collaborative Filtering Techniques," Advances in Artificial Intelligence, Vol.2009, Article ID 421425, pp.1-19, 2009.
  3. W. Jeong, S. Kim, D. Park, and J. Kwak, "Performance Improvement of a Movie Recommendation System based on Personal Propensity and Secure Collaborative Filtering," J Inf Process Syst, Vol.9, No.1, pp.707-722, 2013.
  4. B. Sarwar, G. Karypis, J. Konstan, J. Riedl, "Item based Collaborative Filtering Recommendarion Algorithms" Proceedings of the 10th International World Wide Web Conference, pp.285-295, 2001.
  5. T. Hong, H. Lee, B. Su, "A Web Personalized Recommender Systems Using Clustering - based CBR", Journal of Intelligence Information Systems, Vol.11, No.1, pp.107-121, 2005.
  6. S. Lee, H. Lee, and H. Kim, "Dynamic Recommender on user taste tendency model : Focusing on Movie Recommender Systems," K.I.S.S. Journal, Vol.31, No.2, pp.153-163, 2004.
  7. R. J. Mooney and L. Roy, "Content-based Book Recommending Using Learning for Text Categorization," In Proceedings of ACM SIGIR '99 Workshop Recommender Systems: Algorithms and Evaluation, 1999.
  8. J. Le and O.R. Zaiane, "Combining Usage, Content, and Structure Data to Improve Web Site Recommendation," Fifth International Conference on Electronic Commerce and Web Technologies (EC-Web '04), pp.305-315, 2004.
  9. R. J. Mooney and L. Roy, "Content-based Book Recommending Using Learning for Text Categorization," In Proceedings of ACM SIGIR '99 Workshop Recommender Systems: Algorithms and Evaluation, 1999.
  10. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J. Riedl, "Grouplens : An Open Architecture for Collaborative Filtering of Netnews," Proceedings of the ACM Conf. on Computer Supported Cooperateive Work, pp.175-186, 1994.
  11. J. S. Breese, D. Heckeman and C. Kadie, "Empirical analysis of predictive algorithms for collaborative filtering," Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence, pp.43-52, 1998.
  12. G. Linden, B. Smith, and J. York, "Amazon.com recommendations:item-to-item collaborative filtering," IEEE Internet Computing, Vol.7, No.1, pp.76-80, 2003. https://doi.org/10.1109/MIC.2003.1167344
  13. U. Shardanand and P. Maes, "Social information filtering: algorithms for automating 'word of mouth'," Proceedings of the SIGCHI conference on Human factors in computing system, pp.1210-217, 1995.
  14. L. Terveen, W. Hill, B. Amento, D. McDonald, J. Creter, "PHOAKS: a system for sharing recommendations," Communications of the ACM Vol.40, No.3, pp.59-62, 1997.
  15. S. Lee, D. Park, M. Hong, H. Lee, Y. Jeong, "A Personalized Movie Recommendation System Based on the Blood Types and Collaborative Filtering," Proceedings of Korea information Processing Society Fall Annual Conference, Vol.16, No.2, 2009.

피인용 문헌

  1. Case Study of Big Data-Based Agri-food Recommendation System According to Types of Customers vol.40, pp.5, 2015, https://doi.org/10.7840/kics.2015.40.5.903
  2. Hybrid Preference Prediction Technique Using Weighting based Data Reliability for Collaborative Filtering Recommendation System vol.19, pp.5, 2014, https://doi.org/10.9708/jksci.2014.19.5.061