DOI QR코드

DOI QR Code

Seasonal variation of physico-chemical factors and size-fractionated phytoplankton biomass at Ulsan seaport of East Sea in Korea

동해 울산항에서 이화학적 환경요인 및 크기그룹별 식물플랑크톤 생체량의 계절적 변동

  • Kwon, Oh Youn (Department of Green Life Science, SangMyung University) ;
  • Kang, Jung-Hoon (South Sea Environment research Division, Korea Institute of Ocean Science & Technology)
  • 권오윤 (상명대학교 그린생명과학과) ;
  • 강정훈 (한국해양과학기술원 남해특성연구부)
  • Received : 2013.10.01
  • Accepted : 2013.11.07
  • Published : 2013.11.30

Abstract

This study aimed to understand seasonal variation of physico-chemical factors and biomass of size-fractionated phytoplankton at Ulsan seaport during the period from February 2007 to November 2009. Water temperature, salinity, dissolved oxygen (DO), pH, chemical oxygen demand (COD) and total suspended solid (TSS) varied in the range of 8.94-$24.26^{\circ}C$, 25.06-34.54 psu, 4.30-10.73 mg/L, 7.97-8.53, 0.66-40.70 mg/L and 57.4-103.3 mg/L, respectively. These factors showed no clear spatial variation unlike spatial pattern of inorganic nutrients and total chlorophyll-a (chl-a) concentration as biomass. Concentration of phosphate, nitrate and silicate ranged from 0.01 to 3.03 ${\mu}M$, 0.05 to 21.62 ${\mu}M$, and 0.01 to 27.82 ${\mu}M$, respectively, with 2 times higher concentration at inner stations than that at outer stations during the study period. Within the range of total chl-a concentration (0.36-7.11 ${\mu}gL^{-1}$), higher concentration (avg. 1.88 ${\mu}gL^{-1}$) of total chl-a were observed at inner stations compared to that (avg. 0.90 ${\mu}gL^{-1}$) at outer stations. Micro-sized phytoplankton dominated total biomass of phytoplankton in spring (34.0-81.2%), summer (35.1-65.6%) and winter (3.9-62.0%). Nano- and pico-sized phytoplankton contributed 58.2-74.5% and 22.4-38.2% to total biomass of phytoplankton in autumn, respectively. However, contribution in biomass of size-fractionated phytoplankton to total phytoplankton biomass showed no clear difference between inner and outer stations. Consequently, these results indicated that spatio-temporal distribution of phytoplankton biomass at Ulsan seaport was dominated by micro-phytoplankton (avg. 52.3%) during the study period except autumn, which was closely dependent on the concentration of inorganic nutrients (p<0.05).

울산항의 물리 및 이화학적 요인과 크기그룹별 식물플랑크톤 생체량의 계절변이 이해를 위해, 2007년 2월부터 2009년 11월까지 계절 조사를 수행하였다. 조사기간 중 수온과 염분은 각각 8.94-$24.26^{\circ}C$와 25.06-34.54 psu의 범위에서, 용존산소는 4.30-10.73 mg/L, 수소이온농도는 7.97-8.53, 화학적 산소요구량은 0.66-40.70 mg/L, 그리고 총 부유물질은 57.4-103.3 mg/L의 범위에서 변이를 나타냈다. 이 요인들은 무기영양염과 생체량을 지시하는 총 엽록소-a 농도 분포특성과 달리 뚜렷한 공간적 분포차이가 없었다. 무기영양염 중 인산염은 0.01-3.03 ${\mu}M$의 범위에서, 질산염은 0.05-21.62 ${\mu}M$, 그리고 규산염은 0.01-27.82 ${\mu}M$의 범위에서 변이를 나타냈는데, 특히 내측정점의 농도가 외측정점에 비해 약 2배 이상 높은 특징을 나타냈다. 총 엽록소-a 농도는 0.36-7.11 ${\mu}gL^{-1}$의 범위로, 내측정점 (평균 1.88 ${\mu}gL^{-1}$)에서 외측정점 (평균 0.90 ${\mu}gL^{-1}$)에 비해 높게 나타나 무기영양염의 분포특성과 유사하였다. 소형플랑크톤은 봄철 (34.0-81.2%), 여름철 (35.1-65.6%) 및 겨울철 (3.9-62.0%)에 전체 생체량의 높은 비율을 차지했고, 가을철에는 미소 및 초 미소플랑크톤이 각각 58.2-74.5%와 22.4-38.2%의 높은 비율을 나타냈다. 그러나 각 크기그룹별 생체량의 점유율의 내측 및 외측 정점 간의 공간분포는 뚜렷한 차이가 없었다. 따라서 동해 울산항의 식물플랑크톤은 계절적으로 가을철을 제외한 모든 시기에 소형플랑크톤 그룹 (평균 52.3%)에 의해 주도되었고, 이는 무기영양염의 농도와 밀접함을 지시하였다 (p<0.05).

Keywords

References

  1. Korea Institute of Ocean Science & Technology, "Development of Port Environmental Risk Assessment Technology", BSPP 00700-2044-7, p. 290. 2009.
  2. G. M. Hallegraeff, C. J. Bolch, "Transport of toxic dinoflagellate cysts via ship's ballast water. Mar. Pollut. Bull. 22, 27-30, 1991. https://doi.org/10.1016/0025-326X(91)90441-T
  3. G. M. Hallegraeff, "Transport of toxic dinoflagellates via ship's ballast water: bioeconomic risk assessment and efficacy of possible ballast water management strategies". Mar. Ecol. Prog. Ser., 168, 297-309, 1998. https://doi.org/10.3354/meps168297
  4. T. J. Smayda, "Reflection on the ballast water dispersal harmful algae bloom paradigm. Harmful algae, 6, 601-622, 2007. https://doi.org/10.1016/j.hal.2007.02.003
  5. J.-H. Kang, "Distributional characteristics and carrying capacity of the potentially risky species Noctiluca scintillans at Korean Seaports". Ocean and Polar Res. 32, 449-462.
  6. O. Y. Kwon, J.-H. Kang, "Distribution of potential risky species on phytoplankton at ports in Korea". J. Korea Academia-industrial. 14, 506-510, 2003. DOI: http://dx.doi.org/10.5762/KAIS.2013.14.1.506
  7. T. J. Smayda, "Biogeographical meaning indicators", p. 225-229. In: Phytoplankton manual, ed. by A. Sournia. UNESCO, 1978.
  8. J. C. Kitchen, D. Menzies, H. Park, J. R. V. Zaneveld, "Particles size distributions in a region of coastal upwelling analyzed by characteristic vector". Limnol. Oceanogr. 20, 775-783, 1975. https://doi.org/10.4319/lo.1975.20.5.0775
  9. T. C. Marlone, "Algal size and phytoplankton ecology". In: The physiological ecology of phytoplankton. University of California Press, 1980.
  10. T. Berman. "Size fractionation of natural aquatic populations associated with autotrophic and heterotrophic carbon uptake". Mar. Biol. 33, 215-220, 1975. https://doi.org/10.1007/BF00390925
  11. H. E. Glover, "The psysiology and ecology of the marine cyanobacterial genus Synechococcus". Adv. Aquat. Microbiol. 3, 49-107, 1985
  12. Ministry of oceans and fishers, "Manual of chemical methods for seawater analysis". p. 314, 2005.
  13. T. R. Parson, Y. Maita, C. M. Lalli, "A manual of chemical and biological methods for seawater analysis". Pergamon Press, Oxford, pp. 173, 1984.
  14. J. W. Nybakken, M. D. Bertness, "Marine Biology". An Ecological Approach Benjamin Cummings, San Francisco.
  15. S.-E. Park, S.-J. Hong, W.-C. Lee, R.-H. Jung, Y.-S. Cho, H.-C. Kim, D.-M. Kim, "Summer water quality management by ecological modelling in Ulsan bay". J. Korea Soc. Mar. Environ. & Safety. 16, 1-9, 2010.
  16. E. R, Sohn, J. I. Park, B. Lee, J. W. Lee, J. Kim, "Winter algal bloom and spatial characteristics of water quality in the lower Taewha River, Ulsan, Korea". Korean J. Microbiol., 49, 30-37, 2008. DOI: http://dx.doi.org/10.7845/kjm.2013.262
  17. N. N. Rabalais, R. E. Tumer, R. J. Diaz, D. Justic, "Global change and eutrophication of coastal waters". J. Mar. Sci. 66, 1528-1537, 2009. DOI: http://dx.doi.org/10.1093/icesjms/fsp047
  18. J. C. Goldman, P. M. Gilbert, "Kinetics of inorganic nitrogen uptake by phytoplankton". In, Nitrogen in the marine environment, Academic Press, New York.
  19. M. A. Brzezinski, D. R. Phillips, F. P. Chavez, G. E. Friederich, R. C. Dugdale, "Silica production in the Monterey, California, upwelling system. Limnol. Oceanogr. 42, 1694-1705.
  20. C.-D. Alejandra, G. M. X. Anelu, "Seasonal dynamics of picoplankton in shelf waters of the southern bay of Biscay". Aquat. Microb. Ecol., 42, 159-174, 2006. https://doi.org/10.3354/ame042159
  21. G. A. Tarran, M. A. Zubkov, M. A. Sleigh, P. H. Burkill, "Microbial community structure and standing stocks in the NE Atlantic in June and July of 1996". Deep-Sea Res. II., 48, 963-985, 2001. https://doi.org/10.1016/S0967-0645(00)00104-1

Cited by

  1. Spatio-temporal Variability and Size Fractionation of Chlorophyll a in the Jeju Marine Ranching Area(JMRA) with Special Reference to the Signification of Nanoplankton vol.15, pp.10, 2014, https://doi.org/10.5762/KAIS.2014.15.10.6388
  2. Seasonal Phytoplankton Growth and Distribution Pattern by Environmental Factor Changes in Inner and Outer Bay of Ulsan, Korea vol.21, pp.1, 2016, https://doi.org/10.7850/jkso.2016.21.1.24
  3. Long-term Variations of Phytoplankton Community in Coastal Waters of Kyoungju City Area vol.28, pp.5, 2016, https://doi.org/10.13000/JFMSE.2016.28.5.1417