DOI QR코드

DOI QR Code

Diabetes Risk Analysis Model with Personalized Food Intake Preference

개인 식품섭취 선호도에 따른 당뇨병 발생 위험도 분석 모델

  • Jeon, So-Hye (Department of Medical Engineering, Yonsei University) ;
  • Kim, Nam-Hyun (Department of Medical Engineering, Yonsei University)
  • 전소혜 (연세대학교 의과대학 의학공학교실) ;
  • 김남현 (연세대학교 의과대학 의학공학교실)
  • Received : 2013.10.10
  • Accepted : 2013.11.07
  • Published : 2013.11.30

Abstract

The need of continuous management for diseases came to the fore as a chronic disease has increased, however, research related to personalized food intake analysis are insufficient. In diabetes risk analysis model of this study, food preferences are calculated by Pearson correlation coefficient that is proven method to assess the similarity, and diabetes risk is computed as a Logistic regression that was used in prevalence studies. For the Significance evaluation of this model, it was verified through t-test at 0.05 level of 52 comparison subjects and 52 control subjects. Both groups were significantly independent (p=0.046 <0.05). This model is a new way to personalized health management, through the application to healthcare system based on web and mobile.

최근 만성질환의 증대로 질병의 지속적인 관리에 대한 필요성이 대두되고 있으나 개인 맞춤형 식품섭취와 관련한 분석 연구는 미비하다. 본 연구에서 제시한 당뇨병 발생 위험도 분석 모델은 기존 상품 선호도 연구를 통해 검증된 유사도평가 방법인 피어슨 상관계수 산출을 이용하여 식품 선호도를 산출하고, 유병율 분석 연구 등에 활용된 로지스틱 회귀분석 방법을 이용하여 당뇨병발생 위험도를 제시하였다. 모델의 유의성 평가를 위해 당뇨 진단을 받은 환자 52명(남자: 22명, 여자: 30, 평균연령: 57(${\pm}13.2$)세)과 비교군과 비슷한 연령을 조건으로 무작위 추출된 52명(남자: 17명, 여자: 35, 평균연령: 58(${\pm}9.4$)세)의 t-검정을 통해 0.05 수준에서 유의함을 검증하였다. 이를 통해 식품섭취빈도에 따른 당뇨병 발생 위험도에 차이가 있음(p=0.046)을 확인할 수 있었다. 이 모델을 기반으로 분석된 정보는 스마트폰이나 웹을 이용한 개인 건강관리 시스템에 적용을 통해 새로운 개인 맞춤형 건강관리 방법으로 제시될 수 있다.

Keywords

References

  1. Korea National Statistical Office, "Annual report on the cause of death statistics, 2010." Statistics Korea, 2012.
  2. H. S. Chung, J. A. Seo, S. G. Kim, N. H. Kim, D. M. Kim, C. H. Chung, and D. S. Choi, "Original Articles : Relationship Between Metabolic Syndrome and Risk of Chronic Complications in Koreans with Type 2 Diabetes," Korean Diabetes J, vol. 33, no. 5, pp. 392-400, 2009. DOI: http://dx.doi.org/10.4093/kdj.2009.33.5.392
  3. Y. G. Park, E. M. Lee, C. S. Kim, J. H. Eom, J. A. Byun, N. K. Sun,, "Survey on the Content and Intake Pattern of Sugar from Elementary and Middle School Food services in Daejeon and Chung-cheong Province," JOURNAL OF THE KOREAN SOCIETY OF FOOD SCIENCE AND NUTRITION, vol. 39, no. 10, pp. 1545-1554, OCT, 2010. DOI: http://dx.doi.org/10.3746/jkfn.2010.39.10.1545
  4. W. H. Jeong, B. K. Jin, and E. H. Hwang, "Prevalence of Metabolic Syndrome and Assessment of Food. Nutrient Intakes among Adult Visitors of a Public Health Center in Korea," JOURNAL OF THE KOREAN SOCIETY OF FOOD SCIENCE AND NUTRITION, vol. 41, no. 2, pp. 205-212, 2012. DOI: http://dx.doi.org/10.3746/jkfn.2012.41.2.205
  5. Y. J. Bae, "Evaluation of nutrient and food intake status, and dietary quality in Korean female adults according to obesity : Based on 2007-2009 Korean National Health and Nutrition Examination Survey," The Korean Journal of Nutrition, vol. 45, no. 2, pp. 140-149, 2012. DOI: http://dx.doi.org/10.4163/kjn.2012.45.2.140
  6. K. W. Paek, K. H. Chun, and S. J. Lee, "A Factor of Fasting Blood Glucose and Dietary Patterns in Korean Adults Using Data From the 2007, 2008 and 2009 Korea National Health and Nutrition Examination Survey," J Prev Med Public Health, vol. 44, no. 2, pp. 93-100, 2011. DOI: http://dx.doi.org/10.3961/jpmph.2011.44.2.93
  7. P. K. Newby, and K. L. Tucker, "Empirically Derived Eating Patterns Using Factor or Cluster Analysis: A Review," Nutrition Reviews, vol. 62, no. 5, pp. 177-203, 2004. DOI: http://dx.doi.org/10.1111/j.1753-4887.2004.tb00040.x
  8. M. B. Schulze, K. Hoffmann, A. Kroke, and H. Boeing, "An approach to construct simplified measures of dietary patterns from exploratory factor analysis," British Journal of Nutrition, vol. 89, no. 3, pp. 409-418, 2003. DOI: http://dx.doi.org/10.1079/BJN2002778
  9. Y. Ahn, Y. J. Park, S. J. Park, H. Min, H. K. Kwak, K.S. Oh, and C. Park, "Dietary Patterns and Prevalence Odds Ratio in Middle-aged Adults of Rural and Mid-size City in Korean Genome Epidemiology Study," The Korean Journal of Nutrition, vol. 40, no. 3, pp. 259-269, 2007.
  10. R. M. van Dam, E. B. Rimm, W. C. Willett, M. J. Stampfer, and F. B. Hu, "Dietary Patterns and Risk for Type 2 Diabetes Mellitus in U.S. Men," Annals of Internal Medicine, vol. 136, no. 3, pp. 201-209, 2002. DOI: http://dx.doi.org/10.7326/0003-4819-136-3-200202050-00008
  11. M. Yon, M. Lee, S. Oh, S. Park, C. Kwak, "Assessment of Food Consumption, Dietary Diversity and Dietary Pattern during the Summer in Middle Aged Adults and Older Adults Living in Gugoksoondam Longevity Area, Korea," Korean Journal of Community Nutrition, vol. 15, no. 4, pp. 536-549, 2010.
  12. B. S. Burke, "The dietary history as a tool in research," J Am Diet Assoc, vol. 23, no. 12, pp. 1041-1046, 1947.
  13. W. Willett, "Nutritional epidemiology," Oxford University Press, 2012.
  14. Korea Centers For Disease Control & Prevention, "Guideline: The Fifth Korea National Health and Nutrition Examination Survey (KNHANES V-2)", 2012.
  15. H. Choi, H. Bae, J. Seo, and K. Yoon, "Music Recommendation System Using Extended Collaborative Filtering Based On Emotion & Context Information Fusion.," in Proceedings of Korea Society of Broadcast Engineers, pp. 82-84. 2011.
  16. H. J. Kwon, D. K. Chung, and K. S. Hong, "A Multimedia Recommender System Using User Playback Time," Journal of Korean Society for Internet Information, vol. 10, no. 1, pp. 111-121, 2009.
  17. E. H. Jeong, and B. K. Lee, "A Design of HPPS(Hybrid Preference Prediction System) for Customer-Tailored Service," JOURNAL OF KOREA MULTIMEDIA SOCIETY, vol. 14, no. 11, pp. 1467-1477, NOV, 2011. https://doi.org/10.9717/kmms.2011.14.11.1467
  18. G. Adomavicius, and A. Tuzhilin, "Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions," Knowledge and Data Engineering, IEEE Transactions on, vol. 17, no. 6, pp. 734-749, 2005. https://doi.org/10.1109/TKDE.2005.99
  19. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, "GroupLens: an open architecture for collaborative filtering of netnews," in Proceedings of the 1994 ACM conference on Computer supported cooperative work, pp. 175-186, 1994.
  20. K. Y. Chung, "Human Sensibility Ergonomics Makeup Recommendation System using Context Sensor Information," JOURNAL OF THE KOREA CONTENTS ASSOCIATION, vol. 10, no. 7, pp. 23-30, JUL, 2010. https://doi.org/10.5392/JKCA.2010.10.7.023
  21. H. Jung, H. Yoo , K. Y. Chung, and Y. H. Lee, "Performance Analysis of Intelligence Pain Nursing Intervention U-health System," JOURNAL OF THE KOREA CONTENTS ASSOCIATION, vol. 13, no. 4, pp. 1-7, APR. 2013. https://doi.org/10.5392/JKCA.2013.13.04.001
  22. S. H. Jeon, N. H. Kim, "Prevalence of Diabetes and Impaired fasting glucose according to Food frequency Similarity in Korea," Journal of The Korea Academia-Industrial cooperation Society, vol.14, no.2, pp. 751-758, 2013. https://doi.org/10.5762/KAIS.2013.14.2.751

Cited by

  1. PHR Based Diabetes Index Service Model Using Life Behavior Analysis vol.93, pp.1, 2017, https://doi.org/10.1007/s11277-016-3715-9
  2. Design and Implementation of Chronic Disease Risk Analysis System according to Personalized Food Intake Preferences vol.51, pp.3, 2014, https://doi.org/10.5573/ieie.2014.51.3.147