DOI QR코드

DOI QR Code

Nucleic Acid Aptamers: New Methods for Selection, Stabilization, and Application in Biomedical Science

  • Kong, Hoon Young (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Byun, Jonghoe (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • 투고 : 2013.10.16
  • 심사 : 2013.11.05
  • 발행 : 2013.11.30

초록

The adoption of oligonucleotide aptamer is well on the rise, serving an ever increasing demand for versatility in biomedical field. Through the SELEX (Systematic Evolution of Ligands by EXponential enrichment), aptamer that can bind to specific target with high affinity and specificity can be obtained. Aptamers are single-stranded nucleic acid molecules that can fold into complex three-dimensional structures, forming binding pockets and clefts for the specific recognition and tight binding of any given molecular target. Recently, aptamers have attracted much attention because they not only have all of the advantages of antibodies, but also have unique merits such as thermal stability, ease of synthesis, reversibility, and little immunogenicity. The advent of novel technologies is revolutionizing aptamer applications. Aptamers can be easily modified by various chemical reactions to introduce functional groups and/or nucleotide extensions. They can also be conjugated to therapeutic molecules such as drugs, drug containing carriers, toxins, or photosensitizers. Here, we discuss new SELEX strategies and stabilization methods as well as applications in drug delivery and molecular imaging.

키워드

참고문헌

  1. Andreola, M. L., Calmels, C., Michel, J., Toulme, J. J. and Litvak, S. (2000) Towards the selection of phosphorothioate aptamers:optimizing in vitro selection steps with phosphorothioate nucleotides. Eur. J. Biochem. 267, 5032-5040. https://doi.org/10.1046/j.1432-1327.2000.01557.x
  2. Aravind, A., Jeyamohan, P., Nair, R., Veeranarayanan, S., Nagaoka, Y., Yoshida, Y., Maekawa, T. and Kumar, D. S. (2012) AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol. Bioeng. 109, 2920-2931. https://doi.org/10.1002/bit.24558
  3. Bagalkot, V., Farokhzad, O. C., Langer, R. and Jon, S. (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drugdelivery platform. Angew. Chem. Int. Ed. Engl. 45, 8149-8152. https://doi.org/10.1002/anie.200602251
  4. Banaszynski, M. and Kolesar, J. M. (2013) Vemurafenib and ipilimumab: New agents for metastatic melanoma. Am. J. Health Syst. Pharm. 70, 1205-1210. https://doi.org/10.2146/ajhp120260
  5. Barciszewski, J., Medgaard, M., Koch, T., Kurreck, J. and Ermann, V. A. (2009) Locked nucleic acid aptamers. Methods Mol. Biol. 535, 165-186. https://doi.org/10.1007/978-1-59745-557-2_10
  6. Berezovski, M., Drabovich, A., Krylova, S. M., Musheev, M., Okhonin, V., Petrov, A. and Krylov, S. N. (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J. Am. Chem. Soc. 127, 3165-3171. https://doi.org/10.1021/ja042394q
  7. Berezovski, M., Musheev, M., Drabovich, A. and Krylov, S. N. (2006) Non-SELEX selection of aptamers. J. Am. Chem. Soc. 128, 1410-1411. https://doi.org/10.1021/ja056943j
  8. Blank, M., Weinschenk, T., Priemer, M. and Schluesener, H. (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. 276, 16464-16468. https://doi.org/10.1074/jbc.M100347200
  9. Bruno, J. G., Carrillo, M. P., Phillips, T., Vail, N. K. and Hanson, D. (2008) Competitive FRET-aptamer-based detection of methylphosphonic acid, a common nerve agent metabolite. J. Fluoresc. 18, 867-876. https://doi.org/10.1007/s10895-008-0316-3
  10. Cai, W. and Chen, X. (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3, 1840-1854. https://doi.org/10.1002/smll.200700351
  11. Chen, F., Hu, Y., Li, D., Chen, H. and Zhang, X. L. (2009) CS-SELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLoS One 4, e8142 https://doi.org/10.1371/journal.pone.0008142
  12. Chu, T. C., Marks, J. W. 3rd, Lavery, L. A., Faulkner, S., Rosenblum, M. G., Ellington, A. D. and Levy, M. (2006a) Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res. 66, 5989-5992. https://doi.org/10.1158/0008-5472.CAN-05-4583
  13. Chu, T. C., Twu, K. Y., Ellington, A. D. and Levy, M. (2006b) Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73 https://doi.org/10.1093/nar/gkl388
  14. Cox, J. C., Rudolph, P. and Ellington, A. D. (1998) Automated RNA selection. Biotechnol. Prog. 14, 845-850. https://doi.org/10.1021/bp980097h
  15. Cui, Z. Q., Ren, Q., Wei, H. P., Chen, Z., Deng, J. Y., Zhang, Z. P. and Zhang, X. E. (2011) Quantum dot-aptamer nanoprobes for recognizing and labeling infl uenza A virus particles. Nanoscale. 3, 2454-2457. https://doi.org/10.1039/c1nr10218d
  16. Diener, J. L., Daniel Lagasse, H. A., Duerschmied, D., Merhi, Y., Tanguay, J. F., Hutabarat, R., Gilbert, J., Wagner, D. D. and Schaub, R. (2009) Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J. Thromb. Haemost. 7, 1155-1162. https://doi.org/10.1111/j.1538-7836.2009.03459.x
  17. Dollins, C. M., Nair, S., Boczkowski, D., Lee, J., Layzer, J. M., Gilboa, E. and Sullenger, B. A. (2008) Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem. Biol. 15, 675-682. https://doi.org/10.1016/j.chembiol.2008.05.016
  18. Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822. https://doi.org/10.1038/346818a0
  19. Eyetech Study Group. (2002) Preclinical and phase 1A clinical evaluation of an anti-vegf pegylated aptamer (Eye001) for the treatment of exudative age-related macular degeneration. Retina. 22, 143-152. https://doi.org/10.1097/00006982-200204000-00002
  20. Floege, J., Ostendorf, T., Janssen, U., Burg, M., Radeke, H. H., Vargeese, C., Gill, S. C., Green, L. S. and Janjic, N. (1999) Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am. J. Pathol. 154, 169-179. https://doi.org/10.1016/S0002-9440(10)65263-7
  21. Foy, J. W., Rittenhouse, K., Modi, M. and Patel, M. (2007) Local tolerance and systemic safety of pegaptanib sodium in the dog and rabbit. J. Ocul. Pharmacol. Ther. 23, 452-466. https://doi.org/10.1089/jop.2006.0149
  22. Gilboa, E., McNamara, J. 2nd and Pastor, F. (2013) Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin. Cancer Res. 19, 1054-1062. https://doi.org/10.1158/1078-0432.CCR-12-2067
  23. Gissel, M., Orfeo, T., Foley, J. H. and Butenas, S. (2012) Effect of BAX499 aptamer on tissue factor pathway inhibitor function and thrombin generation in models of hemophilia. Thromb. Res. 130, 948-955. https://doi.org/10.1016/j.thromres.2012.08.299
  24. Gudima, S.O., Kostyuk, D. A., Grishchenko, O. I., Tunitskaya, V. L., Memelova, L. V. and Kochetkov, S. N. (1998) Synthesis of mixed ribo/deoxyribopolynucleotides by mutant T7 RNA polymerase. FEBS Lett. 439, 302-306. https://doi.org/10.1016/S0014-5793(98)01393-3
  25. Hamula, C. L., Le, X. C. and Li, X. F. (2011) DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal. Chem. 83, 3640-3647. https://doi.org/10.1021/ac200575e
  26. Han, D., Zhu, G., Wu, C., Zhu, Z., Chen, T., Zhang, X. and Tan, W. (2013) Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. ACS Nano 7, 2312-2319. https://doi.org/10.1021/nn305484p
  27. Healy, J. M., Lewis, S. D., Kurz, M., Boomer, R. M., Thompson, K. M., Wilson, C. and McCauley, T. G. (2004) Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21, 2234-2246. https://doi.org/10.1007/s11095-004-7676-4
  28. Hicke, B. J., Stephens, A. W., Gould, T., Chang, Y. F., Lynott, C. K., Heil, J., Borkowski, S., Hilger, C. S., Cook, G., Warren, S. and Schmidt, P. G. (2006) Tumor targeting by an aptamer. J. Nucl. Med. 47, 668-678.
  29. Holahan, M. R., Madularu, D., McConnell, E. M., Walsh, R. and DeRosa, M. C. (2011) Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia. PLoS One 6, e22239. https://doi.org/10.1371/journal.pone.0022239
  30. Holland, C. A., Henry, A. T., Whinna, H. C. and Church, F. C. (2000) Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Lett. 484, 87-91. https://doi.org/10.1016/S0014-5793(00)02131-1
  31. Hong, H., Goel, S., Zhang, Y. and Cai, W. (2011) Molecular imaging with nucleic acid aptamers. Curr. Med. Chem. 18, 4195-4205. https://doi.org/10.2174/092986711797189691
  32. Hooks, M. A., Wade, C. S. and Millikan, W. J. (1991) Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11, 26-37.
  33. Horhota, A., Zou, K., Ichida, J. K., Yu, B., McLaughlin, L. W., Szostak, J. W. and Chaput, J. C. (2005) Kinetic analysis of an efficient DNAdependent TNA polymerase. J. Am. Chem. Soc. 127, 7427-7434. https://doi.org/10.1021/ja0428255
  34. Huang, Y. F., Shangguan, D., Liu, H., Phillips, J. A., Zhang, X., Chen, Y. and Tan, W. (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chembiochem. 10, 862-868. https://doi.org/10.1002/cbic.200800805
  35. Hussain, A. F., Tur, M. K. and Barth, S. (2013) An aptamer-siRNA chimera silences the eukaryotic elongation factor 2 gene and induces apoptosis in cancers expressing ${\alpha}$v${\beta}$3 integrin. Nucleic Acid Ther. 23, 203-212. https://doi.org/10.1089/nat.2012.0408
  36. Hwang do, W., Ko, H. Y., Lee, J. H., Kang, H., Ryu, S. H., Song, I. C., Lee, D. S. and Kim, S. (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J. Nucl. Med. 51, 98-105. https://doi.org/10.2967/jnumed.109.069880
  37. Hybarger, G., Bynum, J., Williams, R. F., Valdes, J. J. and Chambers, J. P. (2006) A microfl uidic SELEX prototype. Anal. Bioanal. Chem. 384, 191-198. https://doi.org/10.1007/s00216-005-0089-3
  38. Ichida, J. K., Zou, K., Horhota, A., Yu, B., McLaughlin, L. W. and Szostak, J. W. (2005) An in vitro selection system for TNA. J. Am. Chem. Soc. 127, 2802-2803. https://doi.org/10.1021/ja045364w
  39. Jayasena, S. D. (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628-1650.
  40. Jenison, R. D., Gill, S. C., Pardi, A. and Polisky, B. (1994) High-resolution molecular discrimination by RNA. Science 263, 1425-1429. https://doi.org/10.1126/science.7510417
  41. Kasahara, Y. and Kuwahara, M. (2012) Artifi cial specific binders directly recovered from chemically modified nucleic Acid libraries. J. Nucleic Acids 2012, 156482.
  42. Kasahara, Y., Irisawa, Y., Ozaki, H., Obika, S. and Kuwahara, M. (2013) 2',4'-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2'-O, 4'-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg. Med. Chem. Lett. 23, 1288-1292. https://doi.org/10.1016/j.bmcl.2012.12.093
  43. Kawakami, J., Imanaka, H., Yokota, Y. and Sugimoto, N. (2000) in vitro selection of aptamers that act with $Zn^{2+}$. J. Inorg. Biochem. 82, 197-206. https://doi.org/10.1016/S0162-0134(00)00158-6
  44. Kempeneers, V., Renders, M., Froeyen, M. and Herdewijn, P. (2005) Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization. Nucleic Acids Res. 33, 3828-3836. https://doi.org/10.1093/nar/gki695
  45. Kim, D., Jeong, Y. Y. and Jon, S. (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4, 3689-3696. https://doi.org/10.1021/nn901877h
  46. Kim, S., Kim, Y., Kim, P., Ha, J., Kim, K., Sohn, M., Yoo, J. S., Lee, J., Kwon, J. A. and Lee, K. N. (2006) Improved sensitivity and physical properties of sol-gel protein chips using large-scale material screening and selection. Anal. Chem. 78, 7392-7396. https://doi.org/10.1021/ac0520487
  47. Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A. and Furste, J. P. (1996) Mirror-image RNA that binds D-adenosine. Nat. Biotechnol. 14, 1112-1115. https://doi.org/10.1038/nbt0996-1112
  48. Knight, D. M., Trinh, H., Le, J., Siegel, S., Shealy, D., McDonough, M., Scallon, B., Moore, M. A., Vilcek, J. and Daddona, P. (1993) Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol. Immunol. 30, 1443-1453. https://doi.org/10.1016/0161-5890(93)90106-L
  49. Kolesnikova, O., Kazakova, H., Comte, C., Steinberg, S., Kamenski, P., Martin, R. P., Tarassov, I. and Entelis, N. (2010) Selection of RNA aptamers imported into yeast and human mitochondria. RNA 16, 926-941. https://doi.org/10.1261/rna.1914110
  50. Kuwahara, M., Obika, S., Nagashima, J., Ohta, Y., Suto, Y., Ozaki, H., Sawai, H. and Imanishi, T. (2008) Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2',4'-bridged nucleosides. Nucleic Acids Res. 36, 4257-4265. https://doi.org/10.1093/nar/gkn404
  51. Kuwahara, M., Takahata, Y., Shoji, A., Ozaki, A. N., Ozaki, H. and Sawai, H. (2003) Substrate properties of C5-substituted pyrimidine 2'-deoxynucleoside 5'-triphosphates for thermostable DNA polymerases during PCR. Bioorg. Med. Chem. Lett. 13, 3735-3738. https://doi.org/10.1016/j.bmcl.2003.08.001
  52. Kuwahara, M., Takano, Y., Kasahara, Y., Nara, H., Ozaki, H., Sawai, H., Sugiyama, A. and Obika, S. (2010) Study on suitability of KOD dna polymerase for enzymatic production of artifi cial nucleic acids using base/sugar modified nucleoside triphosphates. Molecules 15, 8229-8240. https://doi.org/10.3390/molecules15118229
  53. Kuwahara, M., Takeshima, H., Nagashima, J., Minezaki, S., Ozaki, H. and Sawai, H. (2009) Transcription and reverse transcription of artifi cial nucleic acids involving backbone modifi cation by template directed DNA polymerase reactions. Bioorg. Med. Chem. 17, 3782-3788. https://doi.org/10.1016/j.bmc.2009.04.045
  54. Latham, J. A., Johnson, R. and Toole, J. J. (1994) The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine. Nucleic Acids Res. 22, 2817-2822. https://doi.org/10.1093/nar/22.14.2817
  55. Lato, S. M., Ozerova, N. D., He, K. , Sergueeva, Z., Shaw, B. R. and Burke, D. H. (2002) Boron-containing aptamers to ATP. Nucleic Acids Res. 30, 1401-1407. https://doi.org/10.1093/nar/30.6.1401
  56. Lauhon, C. T. and Szostak, J. W. (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 117, 1246-1257. https://doi.org/10.1021/ja00109a008
  57. Leal, N. A., Sukeda, M. and Benner, S. A. (2006) Dynamic assembly of primers on nucleic acid templates. Nucleic Acids Res. 34, 4702-4710. https://doi.org/10.1093/nar/gkl625
  58. Leva, S., Lichte, A., Burmeister, J., Muhn, P., Jahnke, B., Fesser, D., Erfurth, J., Burgstaller, P. and Klussmann, S. (2002) GnRH binding RNA and DNA Spiegelmers: a novel approach toward GnRH antagonism. Chem. Biol. 9, 351-359. https://doi.org/10.1016/S1074-5521(02)00111-4
  59. Li, F., Du, Z., Yang, L. and Tang, B. (2013) Selective and sensitive turnon detection of adenosine triphosphate and thrombin based on bifunctional fl uorescent oligonucleotide probe. Biosens. Bioelectron. 41, 907-910. https://doi.org/10.1016/j.bios.2012.10.007
  60. Li, M., Lin, N., Huang, Z., Du, L., Altier, C., Fang, H. and Wang, B. (2008) Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J. Am. Chem. Soc. 130, 12636-12638. https://doi.org/10.1021/ja801510d
  61. Liu, Z., Duan, J. H., Song, Y. M., Ma, J., Wang, F. D., Lu, X., Yang and X. D. (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J. Transl. Med. 10, 148. https://doi.org/10.1186/1479-5876-10-148
  62. Lou, X., Qian, J., Xiao, Y., Viel, L., Gerdon, A. E., Lagally, E. T., Atzberger, P., Tarasow, T. M., Heeger, A. J. and Soh, H. T. (2009) Micromagnetic selection of aptamers in microfl uidic channels. Proc. Natl. Acad. Sci. U.S.A 106, 2989-2994. https://doi.org/10.1073/pnas.0813135106
  63. Mann, A. P., Bhavane, R. C., Somasunderam, A., Liz Montalvo-Ortiz, B., Ghaghada, K. B., Volk, D., Nieves-Alicea, R., Suh, K. S., Ferrari, M., Annapragada, A., Gorenstein, D. G. and Tanaka, T. (2011) Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2, 298-304.
  64. Mann, D., Reinemann, C., Stoltenburg, R. and Strehlitz, B. (2005) in vitro selection of DNA aptamers binding ethanolamine. Biochem. Biophys. Res. Commun. 338, 1928-1934. https://doi.org/10.1016/j.bbrc.2005.10.172
  65. Maul, T. M., Dudgeon, D. D., Beste, M. T., Hammer, D. A., Lazo, J. S., Villanueva, F. S. and Wagner, W. R. (2010) Optimization of ultrasound contrast agents with computational models to improve selection of ligands and binding strength. Biotechnol. Bioeng. 107, 854-864. https://doi.org/10.1002/bit.22857
  66. Mazumdar, S. and Greenwald, D. (2009) Golimumab. MAbs 1, 422-431. https://doi.org/10.4161/mabs.1.5.9286
  67. McIntyre, J. O. and Matrisian, L. M. (2003) Molecular imaging of proteolytic activity in cancer. J. Cell. Biochem. 90, 1087-1097. https://doi.org/10.1002/jcb.10713
  68. McNamara, J. O. 2nd, Andrechek, E. R., Wang, Y., Viles, K. D., Rempel, R. E., Gilboa, E., Sullenger, B. A. and Giangrande, P. H. (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005-1015. https://doi.org/10.1038/nbt1223
  69. McNamara, J. O., Kolonias, D., Pastor, F., Mittler, R. S., Chen, L., Giangrande, P. H., Sullenger, B. and Gilboa, E. (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J. Clin. Invest. 118, 376-386. https://doi.org/10.1172/JCI33365
  70. Meng, L., Yang, L., Zhao, X., Zhang, L., Zhu, H., Liu, C. and Tan, W. (2012) Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One 7, e33434. https://doi.org/10.1371/journal.pone.0033434
  71. Mi, J., Liu, Y., Rabbani, Z. N., Yang, Z., Urban, J. H., Sullenger, B. A. and Clary, B. M. (2010) in vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol. 6, 22-24. https://doi.org/10.1038/nchembio.277
  72. Mosing, R. K., Mendonsa, S. D. and Bowser, M. T. (2005) Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77, 6107-6112. https://doi.org/10.1021/ac050836q
  73. Neff, C. P., Zhou, J., Remling, L., Kuruvilla, J., Zhang, J., Li, H., Smith, D. D., Swiderski, P., Rossi, J. J. and Akkina, R. (2011) An aptamersiRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci. Transl. Med. 3, 66ra6.
  74. Nitsche, A., Kurth, A., Dunkhorst, A., Panke, O., Sielaff, H., Junge, W., Muth, D., Scheller, F., Stocklein, W., Dahmen, C., Pauli, G. and Kage, A. (2007) One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 7, 48. https://doi.org/10.1186/1472-6750-7-48
  75. Nolte, A., Klussmann, S., Bald, R., Erdmann, V. A. and Furste, J. P. (1996) Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat. Biotechnol. 14, 1116-1119. https://doi.org/10.1038/nbt0996-1116
  76. Pageau, S. C. (2009) Denosumab. MAbs 1, 210-5. https://doi.org/10.4161/mabs.1.3.8592
  77. Park, S. M., Ahn, J. Y., Jo, M., Lee, D. K., Lis, J. T., Craighead, H. G. and Kim, S. (2009) Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters. Lab Chip 9, 1206-1212. https://doi.org/10.1039/b814993c
  78. Pastor, F., Soldevilla, M. M., Villanueva, H., Kolonias, D., Inoges, S., de Cerio, A. L., Kandzia, R., Klimyuk, V., Gleba, Y., Gilboa, E. and Bendandi, M. (2013) CD28 aptamers as powerful immune response modulators. Mol. Ther. Nucleic Acids 2, e98. https://doi.org/10.1038/mtna.2013.26
  79. Rockey, W. M., Huang, L., Kloepping, K. C., Baumhover, N. J., Giangrande, P. H. and Schultz, M. K. (2011) Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg. Med. Chem. 19, 4080-4090. https://doi.org/10.1016/j.bmc.2011.05.010
  80. Romer, P. S., Berr, S., Avota, E., Na, S. Y., Battaglia, M., ten Berge, I., Einsele, H. and Hunig, T. (2011) Preculture of PBMCs at high cell density increases sensitivity of T-cell responses, revealing cytokine release by CD28 superagonist TGN1412. Blood 118, 6772-6782. https://doi.org/10.1182/blood-2010-12-319780
  81. Ruckman, J., Green, L. S., Beeson, J., Waugh, S., Gillette, W. L., Henninger, D. D., Claesson-Welsh, L. and Janjic, N. (1998) 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556-20567. https://doi.org/10.1074/jbc.273.32.20556
  82. Savla, R., Taratula, O., Garbuzenko, O. and Minko, T. (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release 153, 16-22. https://doi.org/10.1016/j.jconrel.2011.02.015
  83. Schmidt, K. S., Borkowski, S., Kurreck, J., Stephens, A. W., Bald, R., Hecht, M., Friebe, M., Dinkelborg, L. and Erdmann, V. A. (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res. 32, 5757-5765. https://doi.org/10.1093/nar/gkh862
  84. Schneider, D. J., Feigon, J., Hostomsky, Z. and Gold, L. (1995) Highaffi nity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodefi ciency virus. Biochemistry 34, 9599-9610. https://doi.org/10.1021/bi00029a037
  85. Shi, H., Tang, Z., Kim, Y., Nie, H., Huang, Y. F., He, X., Deng, K., Wang, K. and Tan, W. (2010) in vivo fl uorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Chem. Asian J. 5, 2209-2213. https://doi.org/10.1002/asia.201000242
  86. Shoji, A., Kuwahara, M., Ozaki, H. and Sawai, H. (2007) Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J. Am. Chem. Soc. 129, 1456-1464. https://doi.org/10.1021/ja067098n
  87. Siller-Matula, J. M., Merhi, Y., Tanguay, J. F., Duerschmied, D., Wagner, D. D., McGinness, K. E., Pendergrast, P. S., Chung, J. K., Tian, X., Schaub, R. G. and Jilma, B. (2012) ARC15105 is a potent antagonist of von Willebrand factor mediated platelet activation and adhesion. Arterioscler. Thromb. Vasc. Biol. 32, 902-909. https://doi.org/10.1161/ATVBAHA.111.237529
  88. Song, Y., Zhu, Z., An, Y., Zhang, W., Zhang, H., Liu, D., Yu, C., Duan, W. and Yang, C. J. (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem. 85, 4141-4149. https://doi.org/10.1021/ac400366b
  89. Subramanian, N., Raghunathan, V., Kanwar, J. R., Kanwar, R. K., Elchuri, S. V., Khetan, V. and Krishnakumar, S. (2012) Target-specific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer. Mol. Vis. 18, 2783-2795.
  90. Suntharalingam, G., Perry, M. R., Ward, S., Brett, S. J., Castello-Cortes, A., Brunner, M. D. and Panoskaltsis, N. (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018-1028. https://doi.org/10.1056/NEJMoa063842
  91. Talbot, L. J., Mi, Z., Bhattacharya, S. D., Kim, V., Guo, H. and Kuo, P. C. (2011) Pharmacokinetic characterization of an RNA aptamer against osteopontin and demonstration of in vivo effi cacy in reversing growth of human breast cancer cells. Surgery 150, 224-230. https://doi.org/10.1016/j.surg.2011.05.015
  92. Tang, Z., Parekh, P., Turner, P., Moyer, R. W. and Tan, W. (2009) Generating aptamers for recognition of virus-infected cells. Clin. Chem. 55, 813-822. https://doi.org/10.1373/clinchem.2008.113514
  93. Tsai, C. H., Chen, J. and Szostak, J. W. (2007) Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proc. Natl. Acad. Sci. USA 104, 14598-14603. https://doi.org/10.1073/pnas.0704211104
  94. Tsien, R. Y. (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett. 579, 927-932. https://doi.org/10.1016/j.febslet.2004.11.025
  95. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510. https://doi.org/10.1126/science.2200121
  96. Vater, A., Sell, S., Kaczmarek, P., Maasch, C., Buchner, K., Pruszynska-Oszmalek, E., Kolodziejski, P., Purschke, W. G., Nowak, K. W., Strowski, M. Z. and Klussmann, S. (2013) A mixed mirror-image DNA/RNA aptamer inhibits glucagon and acutely improves glucose tolerance in models of type 1 and type 2 diabetes. J. Biol. Chem. 288, 21136-21147. https://doi.org/10.1074/jbc.M112.444414
  97. Vaught, J. D., Bock, C., Carter, J., Fitzwater, T., Otis, M., Schneider, D., Rolando, J., Waugh, S., Wilcox, S. K. and Eaton, B. E. (2010) Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 132, 4141-4151. https://doi.org/10.1021/ja908035g
  98. Veedu, R. N., Vester, B. and Wengel, J. (2009) Effi cient enzymatic synthesis of LNA-modified DNA duplexes using KOD DNA polymerase. Org. Biomol. Chem. 7, 1404-1409. https://doi.org/10.1039/b819946a
  99. Wang, C. H., Huang, Y. F. and Yeh, C. K. (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27, 6971-6976. https://doi.org/10.1021/la2011259
  100. Wang, J., Jiang, H. and Liu, F. (2000) in vitro selection of novel RNA ligands that bind human cytomegalovirus and block viral infection. RNA 6, 571-583. https://doi.org/10.1017/S1355838200992215
  101. White, R., Rusconi, C., Scardino, E., Wolberg, A., Lawson, J., Hoffman, M. and Sullenger, B. (2001) Generation of species crossreactive aptamers using "toggle" SELEX. Mol. Ther. 4, 567-573. https://doi.org/10.1006/mthe.2001.0495
  102. Williams, K. P., Liu, X. H., Schumacher, T. N., Lin, H. Y., Ausiello, D. A., Kim, P. S. and Bartel, D. P. (1997) Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc. Natl. Acad. Sci. U.S.A. 94, 11285-11290. https://doi.org/10.1073/pnas.94.21.11285
  103. Wittung, P., Nielsen, P. E., Buchardt, O., Egholm, M. and Norden, B. (1994) DNA-like double helix formed by peptide nucleic acid. Nature 368, 561-563. https://doi.org/10.1038/368561a0
  104. Wullner, U., Neef, I., Eller, A., Kleines, M., Tur, M. K. and Barth, S. (2008) Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr. Cancer Drug Targets 8, 554-565. https://doi.org/10.2174/156800908786241078
  105. Xu, W. and Lu, Y. (2011) A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex. Chem. Commun. 47, 4998-5000. https://doi.org/10.1039/c1cc10161g
  106. Yang, X., Fennewald, S., Luxon, B. A., Aronson, J., Herzog, N. K. and Gorenstein, D. G. (1999) Aptamers containing thymidine 3'-Ophosphorodithioates: synthesis and binding to nuclear factor-${\kappa}$B. Bioorg. Med. Chem. Lett. 9, 3357-3362. https://doi.org/10.1016/S0960-894X(99)00600-9
  107. Yang, X., Huang, J., Wang, K., Li, W., Cui, L. and Li, X. (2011) Angiogenin-mediated photosensitizer-aptamer conjugate for photodynamic therapy. ChemMedChem 6, 1788-1780.
  108. Yigit, M. V., Mazumdar, D., Kim, H. K., Lee, J. H., Odintsov, B. and Lu, Y. (2007) Smart "turn-on" magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 8, 1675-1678. https://doi.org/10.1002/cbic.200700323
  109. Zhang, C., Ji, X., Zhang, Y., Zhou, G., Ke, X., Wang, H., Tinnefeld, P. and He, Z. (2013) One-pot synthesized aptamer-functionalized CdTe:$Zn^{2+}$ quantum dots for tumor-targeted fl uorescence imaging in vitro and in vivo. Anal. Chem. 85, 5843-5849. https://doi.org/10.1021/ac400606e
  110. Zhang, M. Z., Yu, R. N., Chen, J., Ma, Z. Y. and Zhao, Y. D. (2012) Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells. Nanotechnology 23, 485104. https://doi.org/10.1088/0957-4484/23/48/485104
  111. Zhang, Y., Hong, H. and Cai W. (2011) Tumor-targeted drug delivery with aptamers. Curr. Med. Chem. 18, 4185-4194. https://doi.org/10.2174/092986711797189547
  112. Zhou, B. and Wang, B. (2006) Pegaptanib for the treatment of agerelated macular degeneration. Exp. Eye Res. 83, 615-619. https://doi.org/10.1016/j.exer.2006.02.010
  113. Zhou, J., Li, H., Li, S., Zaia, J. and Rossi, J. J. (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol. Ther. 16, 1481-1489. https://doi.org/10.1038/mt.2008.92
  114. Zhou, J., Li, H., Zhang, J., Piotr, S. and Rossi J. (2011a) Development of cell-type specific anti-HIV gp120 aptamers for siRNA delivery. J. Vis. Exp. 23, 2954.
  115. Zhou, J., Neff, C. P., Swiderski, P., Li, H., Smith, D. D., Aboellail, T., Remling-Mulder, L., Akkina, R. and Rossi, J. J. (2013) Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol. Ther. 21, 192-200. https://doi.org/10.1038/mt.2012.226
  116. Zhou, J., Shu, Y., Guo, P., Smith, D. D. and Rossi, J. J. (2011b) Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods 54, 284-294. https://doi.org/10.1016/j.ymeth.2010.12.039
  117. Zhu, G., Ye, M., Donovan, M. J., Song, E., Zhao, Z. and Tan, W. (2012A) Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem. Commun. (Camb) 48, 10472-10480. https://doi.org/10.1039/c2cc35042d
  118. Zhu, Q., Shibata, T., Kabashima, T. and Kai, M. (2012B) Inhibition of HIV-1 protease expression in T cells owing to DNA aptamer-mediated specific delivery of siRNA. Eur. J. Med. Chem. 56, 396-399. https://doi.org/10.1016/j.ejmech.2012.07.045

피인용 문헌

  1. Aptamer Technology: Adjunct Therapy for Malaria vol.5, pp.1, 2017, https://doi.org/10.3390/biomedicines5010001
  2. Sequence-defined shuttles for targeted nucleic acid and protein delivery vol.5, pp.9, 2014, https://doi.org/10.4155/tde.14.54
  3. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation vol.101, 2015, https://doi.org/10.1016/j.toxicon.2015.04.017
  4. A novel 4-arm DNA/RNA Nanoconstruct triggering Rapid Apoptosis of Triple Negative Breast Cancer Cells within 24 hours vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00912-3
  5. Efficient functional neutralization of lethal peptide toxins in vivo by oligonucleotides vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-07554-5
  6. Proximity assays for sensitive quantification of proteins vol.4, 2015, https://doi.org/10.1016/j.bdq.2015.04.002
  7. Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20046866
  8. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering vol.67, 2016, https://doi.org/10.1016/j.msec.2016.05.002
  9. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems vol.16, pp.10, 2015, https://doi.org/10.3390/ijms161023784
  10. Development of an Efficient G-Quadruplex-Stabilised Thrombin-Binding Aptamer Containing a Three-Carbon Spacer Molecule vol.18, pp.8, 2017, https://doi.org/10.1002/cbic.201600654
  11. Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects vol.5, pp.3, 2017, https://doi.org/10.3390/biomedicines5030045
  12. Ras ssDNA aptamer inhibits vascular smooth muscle cell proliferation and migration through MAPK and PI3K pathways 2015, https://doi.org/10.3892/ijmm.2015.2139
  13. Post-SELEX optimization of aptamers vol.408, pp.17, 2016, https://doi.org/10.1007/s00216-016-9556-2
  14. Development of Phosphorothioate DNA and DNA Thioaptamers vol.5, pp.3, 2017, https://doi.org/10.3390/biomedicines5030041
  15. From selection hits to clinical leads: progress in aptamer discovery vol.3, 2016, https://doi.org/10.1038/mtm.2016.14
  16. ASSESSMENT OF NEUTRALIZING PROPERTIES OF DNA-APTAMERS AND EXTRACTS OF MEDICINAL HERBS AGAINST THE TICK-BORNE ENCEPHALITIS VIRUS vol.2, pp.1, 2017, https://doi.org/10.12737/article_5955e6b5aad2e3.30269730
  17. Quantitative PCR Analysis of DNA Aptamer Pharmacokinetics in Mice vol.25, pp.1, 2015, https://doi.org/10.1089/nat.2014.0515
  18. Indirect purification method provides high yield and quality ssDNA sublibrary for potential aptamer selection vol.476, 2015, https://doi.org/10.1016/j.ab.2015.02.027
  19. An aptamer targeting shared tumor-specific peptide antigen of MAGE-A3 in multiple cancers vol.138, pp.4, 2016, https://doi.org/10.1002/ijc.29826
  20. Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications vol.5, pp.1, 2016, https://doi.org/10.1038/srep18478
  21. Aptamer Oligonucleotides: Novel Potential Therapeutic Agents in Autoimmune Disease vol.25, pp.4, 2015, https://doi.org/10.1089/nat.2014.0529
  22. Multiple modes of capillary electrophoresis applied in peptide nucleic acid related study vol.1501, 2017, https://doi.org/10.1016/j.chroma.2017.04.038
  23. A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag vol.7, pp.31, 2015, https://doi.org/10.1039/C5NR02628H
  24. Use of anchor protein modules in fluorescence polarisation aptamer assay for ochratoxin A determination vol.962, 2017, https://doi.org/10.1016/j.aca.2017.01.024
  25. Enrichment of endogenous fractalkine and anti-inflammatory cells via aptamer-functionalized hydrogels vol.142, 2017, https://doi.org/10.1016/j.biomaterials.2017.07.013
  26. Aptamer strategy for ATP detection on nanocrystalline diamond functionalized by a nitrogen and hydrogen radical beam system vol.121, pp.4, 2017, https://doi.org/10.1063/1.4974984
  27. Thioaptamer-conjugated CD44-targeted delivery system for the treatment of breast cancer in vitro and in vivo vol.24, pp.4, 2016, https://doi.org/10.3109/1061186X.2015.1077850
  28. Modified Nucleoside Triphosphates for In-vitro Selection Techniques vol.4, 2016, https://doi.org/10.3389/fchem.2016.00018
  29. Modern affinity reagents: Recombinant antibodies and aptamers vol.33, pp.8, 2015, https://doi.org/10.1016/j.biotechadv.2015.10.004
  30. Antibody- and aptamer-strategies for GvHD prevention vol.19, pp.1, 2015, https://doi.org/10.1111/jcmm.12416
  31. Hi-Fi SELEX: A high-fidelity digital-PCR based therapeutic aptamer discovery platform vol.112, pp.8, 2015, https://doi.org/10.1002/bit.25581
  32. Aptasensor for environmental monitoring vol.9, pp.2, 2017, https://doi.org/10.1007/s13530-017-0308-2
  33. Fluorescence anisotropy-based structure-switching aptamer assay using a peptide nucleic acid (PNA) probe vol.97, 2016, https://doi.org/10.1016/j.ymeth.2015.09.018
  34. Therapeutic aptamers: developmental potential as anticancer drugs vol.48, pp.4, 2015, https://doi.org/10.5483/BMBRep.2015.48.4.277
  35. Enzyme-linked antibody aptamer assays based colorimetric detection of soluble fraction of activated leukocyte cell adhesion molecule vol.242, 2017, https://doi.org/10.1016/j.snb.2016.11.070
  36. Analysis of ATP and AMP binding to a DNA aptamer and its imidazole-tethered derivatives by surface plasmon resonance vol.140, pp.17, 2015, https://doi.org/10.1039/C5AN01347J
  37. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0125863
  38. An improved design of the kissing complex-based aptasensor for the detection of adenosine vol.407, pp.21, 2015, https://doi.org/10.1007/s00216-015-8818-8
  39. Site-specific replacement of the thymine methyl group by fluorine in thrombin binding aptamer significantly improves structural stability and anticoagulant activity vol.43, pp.22, 2015, https://doi.org/10.1093/nar/gkv1224
  40. Applications of High-Throughput Sequencing for In Vitro Selection and Characterization of Aptamers vol.9, pp.4, 2016, https://doi.org/10.3390/ph9040076
  41. Electrochemical Aptatoxisensor Responses on Nanocomposites Containing Electro-Deposited Silver Nanoparticles on Poly(Propyleneimine) Dendrimer for the Detection of Microcystin-LR in Freshwater vol.16, pp.11, 2016, https://doi.org/10.3390/s16111901
  42. Neutralization of Staphylococcal Enterotoxin B by an Aptamer Antagonist vol.59, pp.4, 2015, https://doi.org/10.1128/AAC.04414-14
  43. Human antibody-based chemically induced dimerizers for cell therapeutic applications vol.14, pp.2, 2017, https://doi.org/10.1038/nchembio.2529
  44. in platelet concentrates vol.65, pp.6, 2018, https://doi.org/10.2144/btn-2018-0081
  45. Advances on Aptamers against Protozoan Parasites vol.9, pp.12, 2018, https://doi.org/10.3390/genes9120584
  46. SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement vol.185, pp.10, 2018, https://doi.org/10.1007/s00604-018-3020-2
  47. Molecular Application of Aptamers in the Diagnosis and Treatment of Cancer and Communicable Diseases vol.11, pp.4, 2018, https://doi.org/10.3390/ph11040093
  48. Peptide nucleic acid and amino acid modified peptide nucleic acid analysis by capillary zone electrophoresis pp.01730835, 2019, https://doi.org/10.1002/elps.201800312
  49. Emerging Frontiers of Graphene in Biomedicine vol.25, pp.2, 2013, https://doi.org/10.4014/jmb.1412.12045
  50. Aptamers as the Agent in Decontamination Assays (Apta-Decontamination Assays): From the Environment to the Potential Application In Vivo vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/3712070
  51. In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-13751-z
  52. Panoply of Fluorescence Polarization/Anisotropy Signaling Mechanisms for Functional Nucleic Acid-Based Sensing Platforms vol.90, pp.7, 2013, https://doi.org/10.1021/acs.analchem.7b04593
  53. Measurement of (Aptamer-Small Target) KD Using the Competition between Fluorescently Labeled and Unlabeled Targets and the Detection of Fluorescence Anisotropy vol.90, pp.15, 2013, https://doi.org/10.1021/acs.analchem.8b01699
  54. Cascaded Aptamers-Governed Multistage Drug-Delivery System Based on Biodegradable Envelope-Type Nanovehicle for Targeted Therapy of HER2-Overexpressing Breast Cancer vol.10, pp.40, 2013, https://doi.org/10.1021/acsami.8b14009
  55. Improved Detection of HER2 by a Quasi-Targeted Proteomics Approach Using Aptamer–Peptide Probe and Liquid Chromatography–Tandem Mass Spectrometry vol.64, pp.3, 2013, https://doi.org/10.1373/clinchem.2017.274266
  56. Aptamer Oligonucleotides as Potential Therapeutics in Hematologic Diseases vol.19, pp.10, 2019, https://doi.org/10.2174/1389557517666171002160526
  57. Radiolabelled Aptamers for Theranostic Treatment of Cancer vol.12, pp.1, 2013, https://doi.org/10.3390/ph12010002
  58. Updates on Aptamer Research vol.20, pp.10, 2019, https://doi.org/10.3390/ijms20102511
  59. Recent Advances in Degradable Hybrids of Biomolecules and NGs for Targeted Delivery vol.24, pp.10, 2013, https://doi.org/10.3390/molecules24101873
  60. Application of Gold Nanoparticles for High-Sensitivity Fluorescence Polarization Aptamer Assay for Ochratoxin A vol.14, pp.7, 2013, https://doi.org/10.1134/s1995078019040116
  61. Facile and Efficient Chemoenzymatic Semisynthesis of Fc-Fusion Compounds for Half-Life Extension of Pharmaceutical Components vol.30, pp.9, 2019, https://doi.org/10.1021/acs.bioconjchem.9b00235
  62. Internalized Functional DNA Aptamers as Alternative Cancer Therapies vol.11, pp.None, 2013, https://doi.org/10.3389/fphar.2020.01115
  63. Conjugating biomaterials with photosensitizers: advances and perspectives for photodynamic antimicrobial chemotherapy vol.19, pp.4, 2020, https://doi.org/10.1039/c9pp00398c
  64. Chemically Modified Aptamers in Biological Analysis vol.3, pp.5, 2020, https://doi.org/10.1021/acsabm.0c00062
  65. Report on biopharmaceutical profile of recent biotherapeutics and insilco docking studies on target bindings of known aptamer biotherapeutics vol.36, pp.2, 2020, https://doi.org/10.1080/02648725.2020.1858395
  66. The Ca 2+ ‐Regulated Photoprotein Obelin as a Tool for SELEX Monitoring and DNA Aptamer Affinity Evaluation vol.96, pp.5, 2013, https://doi.org/10.1111/php.13274
  67. Aptamers: Novel Therapeutics and Potential Role in Neuro-Oncology vol.12, pp.10, 2013, https://doi.org/10.3390/cancers12102889
  68. Binding Characteristics Study of DNA based Aptamers for E. coli O157:H7 vol.26, pp.1, 2013, https://doi.org/10.3390/molecules26010204
  69. Improving Thermodynamic Stability and Anticoagulant Activity of a Thrombin Binding Aptamer by Incorporation of 8-trifluoromethyl-2′-deoxyguanosine vol.64, pp.1, 2021, https://doi.org/10.1021/acs.jmedchem.0c01711
  70. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.626910
  71. Recent Progress and Opportunities for Nucleic Acid Aptamers vol.11, pp.3, 2021, https://doi.org/10.3390/life11030193
  72. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications vol.13, pp.8, 2013, https://doi.org/10.1021/acsami.0c05750
  73. Rationally Designed Multivalent Aptamers Targeting Cell Surface for Biomedical Applications vol.13, pp.8, 2013, https://doi.org/10.1021/acsami.0c15644
  74. Artificial Intelligence in Aptamer-Target Binding Prediction vol.22, pp.7, 2021, https://doi.org/10.3390/ijms22073605
  75. ANTI‐ epithelial cell adhesion molecule RNA aptamer‐conjugated liposomal doxorubicin as an efficient targeted therapy in mice bearing colon carcinoma tumor vol.37, pp.3, 2021, https://doi.org/10.1002/btpr.3116
  76. In situ food-borne pathogen sensors in a nanoconfined space by surface enhanced Raman scattering vol.188, pp.6, 2021, https://doi.org/10.1007/s00604-021-04864-4
  77. Future Perspectives of Therapeutic, Diagnostic and Prognostic Aptamers in Eye Pathological Angiogenesis vol.10, pp.6, 2013, https://doi.org/10.3390/cells10061455
  78. Electrochemical aptasensors for the detection of hepatocellular carcinoma-related biomarkers vol.45, pp.34, 2013, https://doi.org/10.1039/d1nj01042e
  79. In silico screening of ssDNA aptamer against Escherichia coli O157:H7: A machine learning and the Pseudo K-tuple nucleotide composition based approach vol.95, pp.None, 2013, https://doi.org/10.1016/j.compbiolchem.2021.107568
  80. Aptamer-mediated doxorubicin delivery reduces HCC burden in 3D organoids model vol.341, pp.None, 2013, https://doi.org/10.1016/j.jconrel.2021.11.036