DOI QR코드

DOI QR Code

Enhanced Normalized Subband Adaptive Filter with Variable Step Size

가변 스텝 사이즈를 가지는 개선된 정규 부밴드 적응 필터

  • 정익주 (강원대학교 IT대학 전기전자공학부)
  • Received : 2013.06.18
  • Accepted : 2013.08.29
  • Published : 2013.11.30

Abstract

In this paper, we propose a variable step size algorithm to enhance the normalized subband adaptive filter which has been proposed to improve the convergence characteristics of the conventional full band adaptive filter. The well-known Kwong's variable step size algorithm is simple, but shows better performance than that of the fixed step size algorithm. However, in case that large additive noise is present, the performance of Kwong's algorithm is getting deteriorated in proportion to the amount of the additive noise. We devised a variable step size algorithm which does not depend on the amount of additive noise by exploiting a normalized adaptation error which is the error subtracted and normalized by the estimated additive noise. We carried out a performance comparison of the proposed algorithm with other algorithms using a system identification model. It is shown that the proposed algorithm presents good convergence characteristics under both stationary and non-stationary environments.

본 논문에서는 전밴드(full-band) 적응 필터의 수렴 특성을 개선하기 위해 제안된 정규 부밴드 적응 필터(NSAF)의 성능을 향상시키기 위한 가변 스텝 사이즈 기반의 알고리즘을 제안하였다. 널리 알려진 Kwong의 가변 스텝 사이즈 적응 필터는 간단한 하면서도, 고정된 스텝 사이즈의 적응 필터에 비하여 우수한 성능을 보인다. 그러나 가산잡음이 클 경우, 잡음의 크기에 비례하여 성능이 저하되는 단점이 있다. 본 논문에서는 적응 오차에서 추정된 가산 잡음을 차감한 정규 오차를 이용함으로써 가산 잡음에 의존하지 않는 가변 스텝 사이즈 알고리즘을 제안하였다. 시스템 확인 모델 하에서 컴퓨터 모의 실험을 통하여 제안된 알고리즘이 기존의 알고리즘들에 비하여 정상 및 비정상 환경에서 수렴 특성이 우수함을 보였다.

Keywords

References

  1. S. Haykin Adaptive Filter Theory (Prentice Hall, New Jersey, 2002), pp. 320-326.
  2. A. H. Sayed, Fundamentals of Adaptive Filtering (Wiley-Interscience, New York, 2003), pp. 225-232.
  3. S. Narayan, A. M. Peterson, and M. J. Narasimha, "Transform domain LMS algorithm," IEEE Trans. Acoust. Speech Signal Process. 31, 609-615 (1983). https://doi.org/10.1109/TASSP.1983.1164121
  4. S. S. Pradhan and V.U. Reddy, "A new approach to subband adaptive filtering," IEEE Trans. Signal Process. 47, 655-664 (1999). https://doi.org/10.1109/78.747773
  5. A. Gilloire and M. Vitterli, "Adaptive filtering in subbands with critical sampling: analysis, experiments, and application to acoustic echo cancellation," IEEE Trans. Signal Process. 40, 1862-1875 (1992). https://doi.org/10.1109/78.149989
  6. L. A. Lee and W. S. Gan, "Improving convergence of the NLMS algorithm using constrained subband updates," IEEE Trans. Signal Process. Lett. 11, 736-739 (2004). https://doi.org/10.1109/LSP.2004.833445
  7. R. H. Kwong and E. W. Johnston, "A variable step size LMS algorithm," IEEE Trans. Signal Process. 40, 1633-1642 (1992). https://doi.org/10.1109/78.143435
  8. J. Ni and F. Li, "A variable step size matrix normalized subband adaptive filter," IEEE Trans. Audio. Speech Lang. Process. 18, 1290-1299 (2010). https://doi.org/10.1109/TASL.2009.2032948
  9. J. Shin, N. Kong, and P. Park, "Normalized subband adaptive filter with variable step size," Electron. Lett.48, 204-206 (2012). https://doi.org/10.1049/el.2011.3669
  10. J. Benesty, H. Rey, L. R. Vega, and S. Tressens, "A nonparametric VSS NLMS algorithm," IEEE Trans. Signal Process. Lett. 13, 581-584 (2006). https://doi.org/10.1109/LSP.2006.876323
  11. K. Lee, W. Gan, and S. M. Kuo, Subband Adaptive Filtering:Theory and Implementation (Wiley, West Sussex, 2009), pp. 192-195.