DOI QR코드

DOI QR Code

Estimation on Unsaturated Hydraulic Conductivity Function of Jumoonjin Sand for Various Relative Densities

주문진 표준사의 상대밀도에 따른 불포화 투수계수함수 산정

  • 송영석 (한국지질자원연구원 지구환경연구본부)
  • Received : 2013.01.02
  • Accepted : 2013.08.13
  • Published : 2013.11.30

Abstract

The Soil-Water Characteristics Curve (SWCC) is affected by the initial density of soil under unsaturated condition. Also, the characteristic of hydraulic conductivity is changed by the initial density of soil. To study the effect of initial density of unsaturated soil, SWCC and the Hydraulic Conductivity Function (HCF) of Jumoonjin sand with various relative densities, 40%, 60% and 75% were measured in both drying and wetting processes. As the results of SWCC estimated by van Genuchten (1980) model, the parameter related to Air Entry Value(AEV), ${\alpha}$ in the wetting process is larger than that in drying process, but the parameters related to the SWCC slope, n and the residual water content, m are larger than those in wetting process. The AEV is increased or Water Entry Value (WEV) is decreased with increasing the relative density of sand. The AEV is larger than the WEV at the same relative density of sand. As the results of HCF estimated by van Genuchten (1980) model which is one of the parameter estimation methods, the unsaturated hydraulic conductivity maintained at a saturated one in the low level of matric suctions and then suddenly decreased just before the AEV or the WEV. The saturated hydraulic conductivity in drying process is larger than that in wetting process. The saturated hydraulic conductivity is decreased with increasing the relative density of sand in both drying and wetting processes. Also, the hysteresis in unsaturated HCFs between drying and wetting process was occurred like the hysteresis in SWCCs. According to the test results, the AEV on SWCC is decreased and the saturated hydraulic conductivity is increased with increasing the initial density. It means that SWCC and HCF are affected by the initial density in the unsaturated soil.

불포화 조건에서 흙의 초기 밀도에 따라 흙-함수특성곡선이 변화시키게 되며, 이로 인하여 불포화 조건에서 투수특성도 변화하게 된다. 이에 대한 영향을 고찰하기 위하여 상대밀도 40%, 60% 및 75%의 주문진 표준사에 대한 건조 및 습윤과정에서의 흙-함수특성곡선(SWCC)과 불포화 투수계수함수를 산정하였다. van Genuchten (1980)의 방법을 이용하여 흙-함수특성곡선(SWCC)을 산정한 결과 공기유입값과 관계된 계수 ${\alpha}$는 습윤과정에서 더 큰 값을 가지며, 변곡점의 경사에 관계된 계수 n과 잔류함수비에 관계된 계수 m은 건조과정에서 더 큰 값을 갖는다. 그리고 상대밀도가 증가할수록 공기함입치는 증가하지만 수분함입치는 감소하며, 동일한 상대밀도에서 공기함입치는 수분함입치보다 크게 발생된다. 한편, 계수추정방법 가운데 하나인 van Genuchten (1980)의 방법을 적용하여 불포화 투수계수함수를 산정한 결과 불포화 투수계수는 포화시 투수계수로 일정하게 유지되다가 공기함입치 혹은 수분함입치 직전에 급격하게 감소하는 것으로 나타났다. 건조과정에서의 포화투수계수는 습윤과정에서의 포화투수계수보다 크게 나타나며, 상대밀도가 증가함에 따라 건조 및 습윤과정에서의 포화투수계수는 감소한다. 실험결과에 의하면 주문진 표준사의 초기 간극비에 따라 흙-함수특성곡선(SWCC)에서의 공기함입치(AEV)는 감소하고 포화투수계수는 증가하므로, 흙-함수특성곡선(SWCC)과 불포화 투수계수함수(HCF)는 초기 간극비에 영향을 받는 것으로 나타났다.

Keywords

References

  1. Abu-Hejleh, A. N., Znicari, D. and Illangasekare, T. H. (1993). "Permeability determination for unsaturated soils." Unsaturated Soils, GSP No. 39, ASCE, Houston, S. and Wray, W. eds., pp. 163-174.
  2. Alonso, E. E., Pereira, J. M., Vaunat, J. and Olivella, S. (2010). "A microstructurally based effective stress for unsaturated soils." Geotechnique, Vol. 60, No. 12, pp. 913-925. https://doi.org/10.1680/geot.8.P.002
  3. Assouline, S. (2006). "Modeling the relationship between soil bulk density and the water retention curve." Vadose Zone Jour, Vol. 5, No. 2, pp. 554-562. https://doi.org/10.2136/vzj2005.0083
  4. Brooks, R. H. and Corey, A. T. (1964). Hydraulic Properties of Porous media, Hydrology Paper No. 3, Colorado State University, Fort Collins, CO. USA.
  5. Burdine, N. T. (1953). "Relative permeability calculations from pore size distribution data." Transactions, American Institute of Mining, Metallurgical and Petroleum Engineers, Vol. 198, pp. 71-78.
  6. Campbell, G. S. (1974). "Simple method for determining unsaturated conductivity from moisture retention data." Soil Science, Vol. 117, No. 6, pp. 311-314. https://doi.org/10.1097/00010694-197406000-00001
  7. Childs, E. C. and Collis-George, N. (1950). "The permeability of porous materials." Proc. Royal Society, London, Series A, Vol. 210, pp. 392-405.
  8. Croney, D. and Coleman, J. D. (1954). "Soil structure in relation to soil suction." Jour. Soil Science, Vol. 5, No. 1, pp. 75-84. https://doi.org/10.1111/j.1365-2389.1954.tb02177.x
  9. Dane, J. H. and Hruska, S. (1983). "In-situ determination of soil hydraulic properties during leaching." Soil Science Society of America Journal, Vol. 47, No. 4, pp. 619-624. https://doi.org/10.2136/sssaj1983.03615995004700040001x
  10. Fredlund, D. G. and Xing, A. (1994). "Equations for the soil-water characteristic curve." Canadian Geotechnical Journal, Vol. 31, No. 3, pp. 521-532. https://doi.org/10.1139/t94-061
  11. Gallipoli, D., Wheeler, S. J. and Karstunen, M. (2003). "Modelling of variation of degree of saturation in a deformable unsaturated soil." Geotechnique, Vol. 53, No. 1, pp. 105-112. https://doi.org/10.1680/geot.2003.53.1.105
  12. Gardner, W. (1958). Mathematics of isothermal water conduction in unsaturated soils, Highway Research Board Special Rep. No. 40, Int. Symp. on Physico-Chemical Phenomenon in Soils, Washington, D.C., pp. 78-87.
  13. Hassler, G. L. and Brunner, E. (1945). Measurement of capillary pressures in small core samples, Petroleum Technology, Technical Paper, pp. 114-123.
  14. Hilf, J. W. (1956). An investigation of pore water pressure in compacted cohesive soils, Technical Memorandum No. 654, U.S. Department of the interior, Bureau of Reclamation, Design and Construction Division, Denver, CO.
  15. Hwang, C. S. and Kim, T. H. (2004). "Determination of the unsaturated hydraulic conductivity function." Journal of the Korean Geotechnical Society, Vol. 20, No. 3, pp. 47-51 (in Korean).
  16. Jeong, D. Y. and Song, K. S. (1993). "An experimental study of measuring unsaturated hydraulic parameters on joomoonjin sand." Journal of the Korean Society of Civil Engineers, Vol. 13, No. 5, pp. 261-273 (in Korean).
  17. Kim, S. N., Park, C. W., Mok, Y. J. and Kim, S. M. (2005). "Determination of soil water characteristic curve and permeability equation of unsaturated soils using modified triaxial apparatus." Journal of the Korean Geotechnical Society, Vol. 21, No. 5, pp. 59-64 (in Korean).
  18. Laliberte, G. E., Corey, A. and Brooks, R. (1966). "Properties of unsaturated porous media." Hydrology Paper No.3, Colorado State University, Fort Collins, CO. USA.
  19. Lee, S. H., Seo, W. S., Choo, Y. W. and Kim, D. S. (2008). "Developement of VPPE-BE testing system to evaluate modulus under post-compaction variation in matric suction for unsaturated compated soils." Journal of the Korean Geotechnical Society, Vol. 24, No. 5, pp. 117-127 (in Korean).
  20. Lim, S. Y. and Lyu, T. J. (2008). "The analysis of permeability coefficient and the evaluation of equations of permeability coefficient for an unsaturated soils." Journal of the Korean Geotechnical Society, Vol. 24, No. 1, pp. 5-13 (in Korean).
  21. Lu, N. and Likos, W. J. (2004). Unsaturated soil mechanics, John Wiley & Sons Inc., New York. p. 556.
  22. Masin, D. (2010). "Predicting the dependency of a degree of saturation on void ratio and suction using effective stress principle for unsaturated soils." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 34, No. 1, pp. 73-90.
  23. Masrouri, F., Bicalho, K. V. and Kawai, K. (2008). "Laboratory hydraulic testing in unsaturated soils." Geotechnical and Geological Engineering, Vol. 26, pp. 691-704. https://doi.org/10.1007/s10706-008-9202-7
  24. Mualem, Y. (1976). "A new model for predicting the hydraulic conductivity of unsaturated porous media." Water Resources Research, Vol. 12, No. 3, pp. 513-522. https://doi.org/10.1029/WR012i003p00513
  25. Oh, S. B., Lee, Y. H., Bae, I. S. and Kim, S. M. (2012). "The effect of soil water retention curves under confining stress on the effective stress in variably saturated soils." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 4C, pp. 169-175 (in Korean). https://doi.org/10.12652/Ksce.2012.32.4C.169
  26. Park, S. W., Shin, G. H. and Kim, B. S. (2006). "Soil-water characteristics and hysteretic behaviors on unsaturated pavement subgrades in test roads." Journal of the Korean Society of Road Engineers, Vol. 8, No. 2, pp. 95-104 (in Korean).
  27. Richards, L. A. (1931). "Capillary conduction of liquids through porous medium." Jour. Physics, Vol. 1, pp. 318-333.
  28. Rijtema, P. E. (1965). An analysis of actual evapotranspiration, Agricultural Research Rep. No.659, Pudoc, Wageningen, The Netherlands.
  29. Romero, E., Gens, A. and Lloret, A. (1999). "Water permeability, water retention and microstructure of unsaturated compacted Boom clay." Engineering Geology, Vol. 54, No. 1-2, pp. 11-127.
  30. Sheng, D. and Zhou, A. N. (2011). "Coupling hydraulic with mechanical models for unsaturated soils." Canadian Geotechnical Journal, Vol. 48, No. 5, pp. 826-840. https://doi.org/10.1139/t10-109
  31. Shin, G. H. and Park, S. W. (2006). "Effect of hysteresis on soilwater characteristic curve in weathered granite and gneiss soil slopes during rainfall infiltration." Journal of the Korean Geotechnical Society, Vol. 22, No. 7, pp. 55-64 (in Korean).
  32. Song, Y. S. and Choi, J. S. (2012). "Hysteresis of the suction stress in unsaturated weathered mudstone soils." Journal of the Korean Geotechnical Society, Vol. 28, No. 3, pp. 55-66 (in Korean). https://doi.org/10.7843/kgs.2012.28.3.55
  33. Song, Y. S., Hwang, W. K., Jung, S. J. and Kim, T. H. (2012). "A comparative study of suction stress between sand and silt under unsaturated conditions." Engineering Geology, Vol. 124, pp. 90-97. https://doi.org/10.1016/j.enggeo.2011.10.006
  34. Sun, D. A., Sheng, D., Xiang, L. and Sloan, S. W. (2008). "Elastoplastic prediction of hydro-mechanical behavior of unsaturated soils under undrained conditions." Computers and Geotechnics, Vol. 35, No. 6, pp. 845-852. https://doi.org/10.1016/j.compgeo.2008.08.002
  35. Tarantino, A. (2009). "A water retention model for deformable soils." Geotechnique, Vol. 59, No. 9, pp. 751-762. https://doi.org/10.1680/geot.7.00118
  36. Van Genuchten, M. Th. (1980). "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils." Soil Science Society of America Journal, Vol. 44, pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  37. Welge, H. J. (1952). "A simplified method for computing oil recovery by gas or water drive." Transactions AIME, Vol. 195, pp. 91-98.
  38. Wildenschild, D., Jensen, K. H., Hollenbeck, K. J., Illangasekare, T. H., Znicari, D., Sonnenborg, T. and Butts, M. B. (1997). "A two-stage procedure for determining unsaturated hydraulic characteristics using a syringe pump and outflow observations." Soil Science Society of America Journal, Vol. 61, pp. 347-359. https://doi.org/10.2136/sssaj1997.03615995006100020002x
  39. Wind, G. P. (1955). "Field experiment concerning capillary rise of moisture in heavy clay soil." Netherlands Journal of Agricultural Science, Vol. 3, pp. 60-69.
  40. Zachman, D. W., Duchateau, P. C. and Klute, A. (1981). "The calibration of the Richards flow equation for a draining column by parameter identification." Soil Science Society of America Journal, Vol. 45, pp. 1012-1015. https://doi.org/10.2136/sssaj1981.03615995004500060002x
  41. Zhou, A. N., Sheng, D. and Carter, J. P. (2012). "Modelling the effect of initial density on soil-water characteristic curves." Geotechnique, Vol. 62, No. 8, pp. 669-680. https://doi.org/10.1680/geot.10.P.120

Cited by

  1. Numerical Analysis of Infiltration in Permeable Pavement System considering Unsaturated Characteristics vol.11, pp.3, 2015, https://doi.org/10.15683/kosdi.2015.11.3.318
  2. Estimation of Soil-Water Characteristic Curves in Multiple-Cycles Using Membrane and TDR System vol.9, pp.12, 2016, https://doi.org/10.3390/ma9121019
  3. Soil Water Characteristic Curve Using Volumetric Pressure Plate Extractor Incorporated with TDR System vol.31, pp.8, 2015, https://doi.org/10.7843/kgs.2015.31.8.17
  4. Comparative Study on Unsaturated Characteristic Curves of Boeun Granite Weathered Soil during Drying and Wetting Paths vol.32, pp.7, 2016, https://doi.org/10.7843/kgs.2016.32.7.15
  5. Estimation of Saturation Velocity in Soils During Rainfall using Soil Box Test vol.25, pp.3, 2015, https://doi.org/10.9720/kseg.2015.3.377