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CONICS ON A GENERAL HYPERSURFACE IN COMPLEX

PROJECTIVE SPACES

Dongsoo Shin

Abstract. In this paper we consider the existence of smooth conics on
a general hypersurface of degree d in Pn.

1. Introduction

LetX be a general hypersurface of degree d in a complex projective space Pn.
Recall that Re(X) is the open subscheme of the Hilbert scheme Hilbet+1(X)
which parameterizes smooth rational curves of degree e lying on X . Recently J.
Harris, M. Roth, and J. Starr obtained the following general result for d < n+1

2 :

Theorem (Harris–Roth–Starr [2]). If n > 2 and d < n+1
2 , then Re(X) is an

integral, local complete intersection scheme of dimension (n+1− d)e+(n− 4)
for every e ≥ 1.

However the upper bound of d < n+1
2 in the above theorem is not optimal

for a certain degree e. For instance, we have a sharp bound for the degree d in
case of e = 1:

Theorem (Barth–Van de Ven [1]). If d > 2n − 3, then R1(X) is empty. If

d ≤ 2n− 3, then R1(X) is smooth of dimension 2n− 3− d.

In this paper we will investigate the nonemptyness and smoothness ofR2(X).

Theorem 1.1. Let X be a general hypersurface of degree d in Pn.

(a) If 2d > 3n− 2, then R2(X) is empty.

(b) If 2d ≤ 3n− 2, then R2(X) is smooth and of dimension 3n− 2d− 2.

2. Proof

This section is devoted to the proof of Theorem 1.1.
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Let G(2, n) be the Grassmannian of 2-dimensional subspaces in Pn and U →
G(2, n) the universal bundle. Since every conic is contained in a unique P2 in
Pn, it follows that

Hilb2t+1(Pn) ∼= P(sym2 U∗).

Hence R2(P
n) is open in P(sym2 U∗). Let Hd be the parameter space of hyper-

surfaces of degree d in Pn, i.e., Hd = PN , N =
(

n+d
d

)

− 1. Define the incidence
scheme

Jd = {(C,F ) ∈ R2(P
n)×Hd : C ⊂ F}

and consider two projections pR : Jd → R2(P
n) and pH : Jd → Hd. Then we

have

R2(X) ∼= p−1
H (X).

To prove Theorem 1.1, we modify the proof in Kollár [5, Theorem 4.3] which
considers lines on a general hypersurface. The idea is a comparison of the
dimensions of Jd and the parameter space Hd. A similar technique is used in
Katz [4] which shows that there are 609250 conics on a general quintic threefold.

We begin with the following lemma.

Lemma 2.1. The incidence scheme Jd is irreducible, nonsingular, and of codi-

mension 2d+ 1 in R2(P
n)×Hd.

Proof. Since we have

Hilb2t+1(Pn) ∼= P(sym2 U∗),

it follows that Hilb2t+1(Pn) is irreducible because P(sym2 U∗) is a vector bundle
on the irreducible variety G(2, n). Therefore R2(P

n) is irreducible because
R2(P

n) is open in P(sym2 U∗).
Note that

p−1
R (C) = ker(α : H0(Pn,OPn(d)) → H0(C,OC(d))).

Since C is 2-regular, it follows that α is surjective. Furthermore we have

h0(C,OC(d)) = 2d+ 1 + h1(C,OC(d)) = 2d+ 1.

Therefore we have

codim(p−1
R (C), C ×Hd) = 2d+ 1

for all C ∈ R2(P
n). Thus Jd is irreducible and

codim(Jd, R2(P
n)×Hd) = 2d+ 1.

Further pR : Jd → R2(P
n) is smooth by Hartshorne [3, III, Ex.10.2]. Therefore

Jd is nonsingular. �

Assume that 2d ≤ 3n−2. Let C ⊂ Pn be a conic. One can choose coordinates
(xi) on P

n such that

C ⊂ P2 = 〈x3 = x4 = · · · = xn = 0〉 ⊂ Pn
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and hence

C = 〈Q(x0, x1, x2) = 0, x3 = x4 = · · · = xn = 0〉,

where Q(x0, x1, x2) is a degree 2 polynomial of x0, x1, x2. If a hypersurface
X ⊂ Pn of degree d contains C, then the equation of X can be written as

Qf +

n
∑

i=3

xifi = 0,

where deg f = d−2, deg fi = d−1. Here and afterward, f and fi are considered
as functions on C.

Lemma 2.2 (Notation as above). (a) The hypersurface X is singular at

p ∈ C if and only if

f(p) = f3(p) = · · · = fn(p) = 0.

(b) If X is smooth along the conic C, then the projection pH : Jd → Hd is

smooth at (C,X) if and only if

H0(C,OC(d)) = fH0(C,OC(2)) +

n
∑

i=3

fiH
0(C,OC(1)).

Proof. For i = 0, 1, 2,

∂X

∂xi

∣

∣

∣

∣

p

=
∂Q

∂xi
(p)f(p) +Q(p)

∂f

∂xi
(p) + x3(p)

∂f3
∂xi

(p) + · · ·+ xn(p)
∂fn
∂xi

(p)

=
∂Q

∂xi
(p)f(p) = 0.

However C is smooth at p. Hence not all ∂Q
∂x0

(p), ∂Q
∂x1

(p), ∂Q
∂x2

(p) are zero.

Therefore f(p) = 0. For i = 3, . . . , n,

∂X

∂xi

∣

∣

∣

∣

p

= Q(p)
∂f

∂xi
(p) + x3

∂f3
∂xi

(p) + · · ·+ fi(p) + xi
∂fi
∂xi

(p) + · · ·+ xn
∂fn
∂xi

(p)

= fi(p) = 0.

Therefore we get the first result.
Assume that X is smooth along C. The projection pH is smooth at (C,X)

if and only if kerdpH(C,X) has the expected dimension at (C,X), i.e., dpH is
surjective at (C,X). However R2(X) ∼= p−1

H (X). Hence kerdpH(C,X) is the
Zariski tangent space to R2(X) at C, i.e.,

ker dpH(C,X) ∼= H0(C,NC/X).

Hence pH is smooth at (C,X) if and only if

h0(C,NC/X) = dim Jd − dimHd = 3n− 2d− 2.
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Consider the exact sequence:

0 // NC/X
//

��

NC/Pn
//

∼=

��

NX/Pn

∣

∣

C
//

∼=

��

0

0 // NC/X
// OC(2)

⊕

OC(1)
⊕(n−2) // OC(d) // 0

It follows that

h0(C,NC/X) = 3n− 2d− 2 + h1(C,NC/X).

Therefore pH is smooth at (C,X) if and only if H1(C,NC/X) = 0, which means
the restriction map

H0(C,OC(2)⊕OC(1)
⊕(n−2)) → H0(C,OC(d))

is surjective. Therefore the projection pH : Jd → Hd is smooth at (C,X) if and
only if

H0(C,OC(d)) = fH0(C,OC(2)) +

n
∑

i=3

fiH
0(C,OC(1)). �

Fix an isomorphism ϕ : C → P1. Then we have

H0(C,OC(k)) ∼= H0(P1,OP1(2k)).

Let

m1 : H0(P1,OP1(2))×H0(P1,OP1(2d− 2)) → H0(P1,OP1(2d)),

m2 : H0(P1,OP1(4))×H0(P1,OP1(2d− 4)) → H0(P1,OP1(2d))

be the multiplication maps. If V ⊂ H0(P1,OP1(2d)) is a subspace, then set

m−1
1 (V ) = {g ∈ H0(P1,OP1(2d− 2)) : m(H0(P1,OP1(2))× {g}) ⊂ V },

m−1
2 (V ) = {g ∈ H0(P1,OP1(2d− 4)) : m(H0(P1,OP1(4))× {g}) ⊂ V }.

Lemma 2.3. Let V ⊂ H0(P1,OP1(2d)) be a hyperplane. Then either

(a) V = H0(P1,OP1(2d)(−p)) for some p ∈ P1 and

m−1
i (V ) = H0(P1,OP1(2d− 2i)(−p))

for each i; or
(b) there is no such p, and m−1

1 (V ) ⊂ H0(P1,OP1(2d−2)) has codimension

3 and m−1
2 (V ) ⊂ H0(P1,OP1(2d− 4)) has codimension 5.

Proof. We identify H0(P1,OP1(k)) with the vector space of polynomials of de-

gree k. Let
∑2d

i=0 uix
i denote a general polynomial of degree 2d and

∑2d−2
i=0 vix

i
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a general polynomial of degree 2d − 2. If V is given by a linear equation
∑2d

i=0 ciui = 0, then m−1
1 (V ) is given by the three equations

2d−2
∑

i=0

civi = 0,

2d−2
∑

i=0

ci+1vi = 0,

2d−2
∑

i=0

ci+2vi = 0.

If these three equations are linearly dependent, then there is a point p = (s, t) ∈
P1 such that sci = tci+1 for 0 ≤ i ≤ 2d− 2. Equivalently,

(c0, . . . , cd) = constant · (td, td−1s, . . . , sd).

This means that V = H0(P1,OP1(2d)(−p)) for some p ∈ P1. Otherwisem−1
1 (V )

has codimension 3. With similar method we can prove the other statement for
m−1

2 (V ). �

Proposition 2.4. Let J0
d ⊂ Jd be the open subset consisting of those pairs

(C,X) such that X is smooth along C. Let Z0 ⊂ J0
d be the closed subset of

those pairs (C,X) such that pH is not smooth at (C,X). Then we have

codim(Z0, J0
d ) ≥ 3n− 2d− 1.

Proof. It is enough to show that

codim(Z0 ∩ p−1
R (C), p−1

R (C)) ≥ 3n− 2d− 1.

Note that

J0
d ∩ p−1

R (C) ∼= {(f, f3, . . . , fn) : f, f3, · · · , fn have no common zero},

Z0 ∩ p−1
R (C) ∼= {(f, f3, . . . , fn) : fH0(C,O(2)) +

n
∑

i=3

fiH
0(C,O(1))

 H0(C,O(d))}

Let V be a hyperplane contained in H0(C,OC(d)). Define

Z0
V = {(f, f3, . . . , fn) : fH

0(C,OC(2)) +

n
∑

i=3

fiH
0(C,O(1)) ⊂ V }

in H0(C,OC(d− 2))⊕H0(C,OC(d− 1))⊕(n−2). Then we have

Z0 ∩ p−1
R (C) =

⋃

V

Z0
V .

Since dimPH0(C,O(d)) = 2d, it follows that

dim(Z0 ∩ p−1
R (C))− dimZ0

V = 2d.

However we have

dim(J0
d ∩ p−1

R (C)) = dim p−1
R (C);

hence it is enough to show that

codim(Z0
V , J

0
d ∩ p−1

R (C)) ≥ 3n− 1.
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Note that

Z0
V = {f ∈ H0(C,OC(d− 2)) : fH0(C,OC(2)) ⊂ V }

⊕

n
⊕

i=3

{fi ∈ H0(C,OC(d− 1)) : fiH
0(C,OC(1)) ⊂ V }

∼= m−1
2 (V )⊕m−1

1 (V )⊕(n−2).

Therefore it follows by Lemma 2.3 that

codim(Z0
V , J

0
d ∩ p−1

R (C)) ≥ 5 + 3(n− 2) = 3n− 1. �

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. If 2d > 3n− 2, then we have

dim Jd < dimHd

by Lemma 2.1; hence it follows that

codim(pH(Jd), Hd) ≥ 1.

Therefore R2(X) is empty for general X .
Suppose that 2d ≤ 3n − 2. Then it is not difficult to show that the map

pH : Jd → Hd is dominant by counting parameters: A conic C in Pn is given
by n+1 homogeneous forms αi(u, v)(i = 0, . . . , n) of degree 2 in two variables.
Taking into account the ambiguity arising from the PGL2 action of P1, a conic
C depends on 3n− 1 parameters. If a conic C is contained in a hypersurface
X in Pn defined by a homogeneous polynomial h(x0, . . . , xn) of degree d, then

h(α0(u, v), . . . , αn(u, v)) = 0.

The left hand side of the above equation is a polynomial of degree 2d in u and
v. Its 2d + 1 coefficients are constantly zero. Therefore if X is general, then
these equations may impose independent conditions to the 3n− 1 parameters
of the conic C. Hence the dimension of the solutions is 3n− 2d− 2. That is, a
general hypersurface of degree d in Pn contains a smooth conic. Therefore the
map pH is dominant as asserted.

Let H0
d ⊂ Hd be the open subset parameterizing smooth hypersurfaces. If

X ∈ H0, then p−1
H (X) is smooth if and only if x /∈ pH(Z0). By Proposition 2.4

the codimension of Z0 is greater than the generic fiber dimension of pH . This
shows that R2(X) is smooth for general X . �
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