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CONICS ON A GENERAL HYPERSURFACE IN COMPLEX
PROJECTIVE SPACES

DONGSOO SHIN

ABSTRACT. In this paper we consider the existence of smooth conics on
a general hypersurface of degree d in P™.

1. Introduction

Let X be a general hypersurface of degree d in a complex projective space P™.
Recall that R.(X) is the open subscheme of the Hilbert scheme Hilb® ™! (X)
which parameterizes smooth rational curves of degree e lying on X. Recently J.
Harris, M. Roth, and J. Starr obtained the following general result for d < "TH:

Theorem (Harris-Roth-Starr [2]). Ifn > 2 and d < 241, then R.(X) is an
integral, local complete intersection scheme of dimension (n+1—d)e+ (n—4)
for every e > 1.

However the upper bound of d < ”TH in the above theorem is not optimal
for a certain degree e. For instance, we have a sharp bound for the degree d in
case of e = 1:

Theorem (Barth-Van de Ven [1]). If d > 2n — 3, then R1(X) is empty. If
d < 2n — 3, then R1(X) is smooth of dimension 2n — 3 — d.

In this paper we will investigate the nonemptyness and smoothness of Ry (X).

Theorem 1.1. Let X be a general hypersurface of degree d in P™.
(a) If 2d > 3n — 2, then Ra(X) is empty.

(b) If 2d < 3n — 2, then Ra(X) is smooth and of dimension 3n — 2d — 2.
2. Proof
This section is devoted to the proof of Theorem 1.1.
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Let G(2, n) be the Grassmannian of 2-dimensional subspaces in P and U —
G(2,n) the universal bundle. Since every conic is contained in a unique P? in
P™ it follows that

Hilb* ! (P") =2 P(sym? U*).
Hence Ry(P™) is open in P(sym? U*). Let Hy be the parameter space of hyper-
surfaces of degree d in P”, i.e., Hy =PV, N = (”;d) — 1. Define the incidence
scheme
Ja={(C,F) € Ry(P") x Hy: C C F}
and consider two projections pg : Jg — Rao(P") and py : Jg — Hy. Then we
have
Ry (X) = pp (X).

To prove Theorem 1.1, we modify the proof in Kolldr [5, Theorem 4.3] which
considers lines on a general hypersurface. The idea is a comparison of the
dimensions of J; and the parameter space Hy. A similar technique is used in
Katz [4] which shows that there are 609250 conics on a general quintic threefold.

We begin with the following lemma.

Lemma 2.1. The incidence scheme Jy is irreducible, nonsingular, and of codi-
mension 2d + 1 in Ra(P™) x Hy.

Proof. Since we have
Hilb* T (P") = P(sym?® U*),

it follows that Hilb***! (P") is irreducible because P(sym? U*) is a vector bundle
on the irreducible variety G(2,n). Therefore Ro(P™) is irreducible because
Ry(P™) is open in P(sym? U*).

Note that

pr (C) =ker(a: H(P", Opn(d)) — H°(C, Oc(d))).
Since C' is 2-regular, it follows that « is surjective. Furthermore we have
RO(C, Oc(d)) = 2d + 1+ h' (C,0c(d)) = 2d + 1.
Therefore we have
codim(py'(C),C x Hy) = 2d + 1
for all C' € Ro(P™). Thus Jy is irreducible and
codim(Jg, Ro(P™) x Hg) = 2d + 1.

Further pg : Jg — Ra(P™) is smooth by Hartshorne [3, ITI, Ex.10.2]. Therefore
Jq is nonsingular. O

Assume that 2d < 3n—2. Let C C P™ be a conic. One can choose coordinates
(x;) on P™ such that

CcP’=(r3=a4=-=2,=0)CP"
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and hence
C =(Q(zo,x1,22) =0, 23 =24 =--- =2, =0),

where Q(xg,x1,x2) is a degree 2 polynomial of xg, x1, 2. If a hypersurface
X C P" of degree d contains C', then the equation of X can be written as

QerZsz‘fi =0,

=3

where deg f = d—2, deg f; = d—1. Here and afterward, f and f; are considered
as functions on C.

Lemma 2.2 (Notation as above). (a) The hypersurface X is singular at
p € C if and only if
f(p) = fa(p) = -+~ = fulp) = 0.

(b) If X is smooth along the conic C, then the projection pg : Jg — Hg is
smooth at (C, X) if and only if

H°(C,0c(d)) = fH°(C,0c(2) +Zfz (C,0c(1)).

Proof. For i =0,1,2,

gii gﬁ( )f(p) +Q(p) gﬂi (p) + z3(p) gi 3 () + -+« + 2n(p) gﬁj )
=22 i) =0,

However C' is smooth at p. Hence not all g—g(p), 99 (p), 9L (p) are zero.
Therefore f(p) =0. Fori =3,...,n

15) o 9

= filp) =0

Therefore we get the first result.

Assume that X is smooth along C. The projection pg is smooth at (C, X)
if and only if ker dpy (C, X) has the expected dimension at (C, X), i.e., dpy is
surjective at (C, X). However Ro(X) = pj,' (X). Hence kerdpy (C, X) is the
Zariski tangent space to Ro(X) at C| i.e.,

ker dpy (C, X) = H(C,Ng/x).

Ofn

- Q5= ()

P

(p)+- + 07—

O

Hence py is smooth at (C, X) if and only if
h(C,Ng)x) = dim Jg — dim Hy = 3n — 2d — 2.
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Consider the exact sequence:

0 ——=Ng/x Ne /pn NX/IP’"|C—>O
00— Neyx — 0c(2) @ Oc(1)®2) Oc(d) 0

It follows that
hO(C,Nc/X) =3n—2d—2+ hl(C,NC/X).
Therefore py is smooth at (C, X) if and only if H'(C, N¢,x) = 0, which means

the restriction map

H°(C,0¢c(2) & Oc(1)®"2)) = H°(C,0c(d))

is surjective. Therefore the projection pg : Jg — Hy is smooth at (C, X) if and
only if

n

H°(C,0c(d)) = fH(C,00(2)) + Y _ fiH(C,0c(1)). O

=3

Fix an isomorphism ¢ : C — P!. Then we have

H(C,0c(k)) =2 HO(P', Op:1 (2K)).
Let
my : HO(PY, Op1(2)) x HY(P!, Op1(2d — 2)) — H (P, Op1(2d)),
ma : H(P', Op1(4)) x HY(P!, Op1(2d — 4)) — H° (P, Op1(2d))
be the multiplication maps. If V. C H°(P!, Op:1(2d)) is a subspace, then set
my (V) = {g € H(P',O0pm (2d — 2)) : m(H°(P*, Op (2)) x {g}) C V'},
my ' (V) = {g € H'(P!, Op1 (2d — 4)) : m(H" (P!, Op1 (4)) x {g}) C V}.
Lemma 2.3. Let V C H°(P', Op1(2d)) be a hyperplane. Then either
(a) V = HO(P', Op1 (2d)(—p)) for some p € P! and
m; (V) = H (P!, 051 (2d — 2i)(—p))

for each i; or
(b) there is no such p, and my (V) C H°(P', Op1(2d—2)) has codimension
3 and my (V) € HO(P', Op1(2d — 4)) has codimension 5.

Proof. We identify H°(P!, Op1 (k)) with the vector space of polynomials of de-

gree k. Let Z?io u;x’ denote a general polynomial of degree 2d and Zfif vt
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a general polynomial of degree 2d — 2. If V is given by a linear equation

Z?io ciu; = 0, then my (V) is given by the three equations

2d—2 2d—2 2d—2

Z CiV; = O, Z Ci+1V; = O, Z Ci+20; = 0.
i=0 i=0 i=0
If these three equations are linearly dependent, then there is a point p = (s,t) €
P! such that sc; = tc; 41 for 0 < i < 2d — 2. Equivalently,
(o, ..,cq) = constant - (t4,t%71s, ... s%).

This means that V = HO(P', Op1(2d)(—p)) for some p € P*. Otherwise my* (V)
has codimension 3. With similar method we can prove the other statement for
my (V). O

Proposition 2.4. Let JS C J; be the open subset consisting of those pairs
(C, X) such that X is smooth along C. Let Z° C JY be the closed subset of
those pairs (C,X) such that pg is not smooth at (C, X). Then we have

codim(Z°, J3) > 3n —2d — 1.
Proof. Tt is enough to show that
codim(Z° N pR' (0), pr'(C)) > 3n —2d — 1.
Note that
JIpR (C) =2 {(f, f3y--+s fn) i £, f3,-+ » fn have no common zero},
ZO0pR (C) = A{(f, fs,---, fa) = FHO(C,0(2)) + Y fiH(C,0(1))

=3

¢ H(C,0(d))}
Let V be a hyperplane contained in H°(C, O¢(d)). Define
Zy ={(f. fs,--- fn) : FHY(C,0c(2)) + > fiH(C,0(1)) C V}
=3
in H(C,0¢(d - 2)) ® H*(C,0c(d —1))®™=2). Then we have

Z°npptC) =20
14

Since dimPHY(C, O(d)) = 2d, it follows that

dim(Z° N pr'(C)) — dim Z) = 2d.
However we have

dim(Jg Npg'(C)) = dimpz' (C);
hence it is enough to show that

codim(ZY, J§ N pRp'(C)) > 3n — 1.
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Note that

2y ={f € H(C,0c(d - 2)) : fH(C,0c(2)) C V}
PPisi e H(C,0c(d—1)): ;H(C,0c(1)) C V}
=3
=~my (V) emyH(V)®n2).
Therefore it follows by Lemma 2.3 that

codim(Zy,, J$ N pRp'(C)) >5+3(n—2) =3n — 1. O
We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. If 2d > 3n — 2, then we have
dim J; < dim Hy
by Lemma 2.1; hence it follows that
codim(pg (Jq), Hqg) > 1.

Therefore Ro(X) is empty for general X.

Suppose that 2d < 3n — 2. Then it is not difficult to show that the map
pyg : Jg — Hg is dominant by counting parameters: A conic C in P" is given
by n + 1 homogeneous forms a;(u,v)(i = 0,...,n) of degree 2 in two variables.
Taking into account the ambiguity arising from the PG Lo action of P!, a conic
C depends on 3n — 1 parameters. If a conic C' is contained in a hypersurface
X in P" defined by a homogeneous polynomial h(zg,...,2,) of degree d, then

h(ao(u,v),. .., an(u,v)) = 0.

The left hand side of the above equation is a polynomial of degree 2d in v and
v. Its 2d + 1 coefficients are constantly zero. Therefore if X is general, then
these equations may impose independent conditions to the 3n — 1 parameters
of the conic C. Hence the dimension of the solutions is 3n — 2d — 2. That is, a
general hypersurface of degree d in P™ contains a smooth conic. Therefore the
map py is dominant as asserted.

Let H) C Hy be the open subset parameterizing smooth hypersurfaces. If
X € H°, then py*(X) is smooth if and only if z ¢ pr(Z°). By Proposition 2.4
the codimension of Z° is greater than the generic fiber dimension of pg. This
shows that Ry (X) is smooth for general X. O
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