THE COMPETITION INDEX OF A NEARLY REDUCIBLE BOOLEAN MATRIX

Han Hyuk Cho and Hwa Kyung Kim

Abstract

Cho and Kim [4] have introduced the concept of the competition index of a digraph. Similarly, the competition index of an $n \times n$ Boolean matrix A is the smallest positive integer q such that $A^{q+i}\left(A^{T}\right)^{q+i}$ $=A^{q+r+i}\left(A^{T}\right)^{q+r+i}$ for some positive integer r and every nonnegative integer i, where A^{T} denotes the transpose of A. In this paper, we study the upper bound of the competition index of a Boolean matrix. Using the concept of Boolean rank, we determine the upper bound of the competition index of a nearly reducible Boolean matrix.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in $[3,7]$. A Boolean matrix is a matrix over the binary Boolean algebra $\{0,1\}$. For $m \times n$ Boolean matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, we say that B is dominated by A (denoted by $B \leq A$) if $b_{i j} \leq a_{i j}$ for all i and j. We denote the $m \times n$ all-ones Boolean matrix by $J_{m, n}$ (and by J_{n} if $m=n$), the $m \times n$ all-zeros Boolean matrix by $O_{m, n}$ (and by O_{n} if $m=n$), and the $n \times n$ identity Boolean matrix by I_{n}. The subscripts m and n will be omitted whenever their values are clear from the context.

Let $D=(V, E)$ denote a digraph (directed graph) with vertex set $V=V(D)$ and arc set $E=E(D)$. Loops are permitted but multiple arcs are not. An $x \rightarrow y$ walk in a digraph D is a sequence of vertices $x, v_{1}, \ldots, v_{t}, y \in V(D)$ and a sequence of $\operatorname{arcs}\left(x, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{t}, y\right) \in E(D)$, where the vertices and arcs are not necessarily distinct. A closed walk is an $x \rightarrow y$ walk where $x=y$. A cycle is a closed $x \rightarrow y$ walk in which all vertices except x and y are distinct. The length of a walk W is the number of arcs in W. The notation $x \xrightarrow{k} y$ is used to indicate that there is a $x \rightarrow y$ walk of length k. An l-cycle is a cycle of

[^0]length l. If the digraph D has at least one cycle, the length of a shortest cycle in D is called the girth of D, denoted by $s(D)$.

For an $n \times n$ Boolean matrix $A=\left(a_{i j}\right)$, its digraph, denoted by $D(A)$, is the digraph with vertex set $V(D(A))=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and $\left(v_{i}, v_{j}\right)$ is an arc of $D(A)$ if and only if $a_{i j}=1$. Using Boolean arithmetic $(1+1=1,0+0=0$, $1+0=1), A B$ and $A+B$ are Boolean matrices if A and B are Boolean matrices. Note that for a positive integer k, the (Boolean) k-th power $A^{k}=\left[b_{i j}\right]$ of A is a Boolean matrix such that $b_{i j}=1$ if and only if there is a directed walk of length k from v_{i} to v_{j} in $D(A)$.

A digraph D is called strongly connected if for each pair of vertices x and y in $V(D)$, there is a walk from x to y. For a strongly connected digraph D, the index of imprimitivity of D is the greatest common divisor of the lengths of the cycles in D, and it is denoted by $p(D)$. If D is a trivial digraph of order $1, p(D)$ is undefined. A strongly connected digraph D is primitive if $p(D)=1$. If D is primitive, there exists some positive integer l such that there is a walk of length exactly l from each vertex x to each vertex y. The smallest such l is called the exponent of D, denoted by $\exp (\mathrm{D})$. Exponents have been studied by several researchers $[3,7,8,9,10]$.

We say that a Boolean matrix A is permutationally similar to a Boolean matrix B if there exists a permutation Boolean matrix P satisfying $B=P A P^{T}$, where P^{T} denotes the transpose of P. The Boolean matrix A is called reducible if A is permutationally similar to a Boolean matrix of the form

$$
\left[\begin{array}{cc}
A_{1} & O \\
A_{21} & A_{2}
\end{array}\right]
$$

where A_{1} and A_{2} are square Boolean matrices of order at least one. If A is not reducible, it is called irreducible. A is irreducible if and only if $D(A)$ is strongly connected (see [3]). The Boolean matrix A is called primitive if $D(A)$ is primitive.

Let D be a digraph (with or without loops) with the vertex set $\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{n}\right\}$. Given a positive integer m, we say that a vertex v_{k} of D is an m-step common prey of v_{i} and v_{j} if $v_{i} \xrightarrow{m} v_{k}$ and $v_{j} \xrightarrow{m} v_{k}$. Then, the m-step competition graph of D, denoted by $C^{m}(D)$, has the same vertex set as D, and there is an edge between vertices v_{i} and $v_{j}\left(v_{i} \neq v_{j}\right)$ if and only if v_{i} and v_{j} have an m-step common prey in D. The m-step digraph of D, denoted by D^{m}, has the same vertex set as D and an arc $\left(v_{i}, v_{j}\right)$ if and only if $v_{i} \xrightarrow{m} v_{j}$. Then, we have $C^{m}(D)=C\left(D^{m}\right)$ for each positive integer m (see [5]).

Consider the sequence

$$
D, D^{2}, D^{3}, \ldots, D^{m}, \ldots
$$

Then, there exists the smallest positive integer q such that $D^{q}=D^{q+r}$ for some positive integer r. Such an integer q is called the index of D, and it is denoted by index (D). There also exists the smallest positive integer p such
that $D^{q}=D^{q+p}$; such an integer is called the period of D, and it is denoted by period (D).

Now, consider the competition graph sequence

$$
C(D), C\left(D^{2}\right), C\left(D^{3}\right), \ldots, C\left(D^{m}\right), \ldots
$$

There exists the smallest positive integer q such that $C\left(D^{q+i}\right)=C\left(D^{q+r+i}\right)$ for some positive integer r and every nonnegative integer i. Such an integer q is called the competition index of D, and it is denoted by cindex (D). Let $q=\operatorname{cindex}(D)$. Then, there exists the smallest positive integer p such that $C\left(D^{q+i}\right)=C\left(D^{q+p+i}\right)$ for every nonnegative integer i. Such an integer p is called the competition period of D, and it is denoted by cperiod (D).

An analogous definition for the competition index and competition period can be given for a Boolean matrix. The competition index of a Boolean matrix A, denoted by cindex (A), is the smallest positive integer q such that $A^{q+i}\left(A^{T}\right)^{q+i}=A^{q+r+i}\left(A^{T}\right)^{q+r+i}$ for some positive integer r and every nonnegative integer i. The competition period of a Boolean matrix A, denoted by $\operatorname{cperiod}(A)$, is the smallest positive integer p such that $A^{q+i}\left(A^{T}\right)^{q+i}=$ $A^{q+p+i}\left(A^{T}\right)^{q+p+i}$ for $q=\operatorname{cindex}(A)$ and every nonnegative integer i. If A is the adjacency matrix of a digraph D, then we have cindex $(A)=\operatorname{cindex}(D)$ and $\operatorname{cperiod}(A)=\operatorname{cperiod}(D)$. As a result, throughout the paper, as long as no confusion occurs, we use the digraph D and the adjacency matrix $A(D)$ interchangeably.

Akelbek and Kirkland [2] introduced the scrambling index of a primitive digraph. The scrambling index is the smallest positive integer k such that for every pair of vertices u and v, there exists a vertex w such that $u \xrightarrow{k} w$ and $v \xrightarrow{k} w$ in D. Akelbek and Kirkland's definition of the scrambling index is the same as our definition of the competition index in the case of a primitive digraph (see [6]). In [2], they presented the following result regarding the scrambling index.

Proposition 1.1 (Akelbek and Kirkland [2]). Let D be a primitive digraph of order n and girth s. Then,

$$
\text { cindex }(D) \leq \begin{cases}n-s+\left(\frac{s-1}{2}\right) n, & \text { when } s \text { is odd } \\ n-s+\left(\frac{n-1}{2}\right) s, & \text { when } s \text { is even }\end{cases}
$$

For a positive integer $n \geq 3$, we define

$$
W_{n}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
1 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

and $\omega_{n}=\left\lceil\frac{(n-1)^{2}+1}{2}\right\rceil, \omega_{1}=1, \omega_{2}=2$.

Cho and Kim [4] presented the following result regarding the upper bound of the competition index of a strongly connected digraph.

Proposition 1.2 (Cho and Kim [4]). Let A be an irreducible $n \times n$ Boolean matrix, where $n \geq 3$. Then, we have

$$
\operatorname{cindex}(A) \leq \omega_{n}
$$

The equality holds if and only if A is permutationally similar to W_{n}.

2. A bound on the competition index of an irreducible Boolean matrix using Boolean rank

For a pair of vertices u and v, let cindex $(D: u, v)$ denote the smallest positive integer m such that u and v have an l-step common prey whenever $l \geq m$. If there is no such positive integer m for u and v, we let $\operatorname{cindex}(D: u, v)=1$. Further, we let $\operatorname{cindex}(D: u, u)=1$. If D is strongly connected,

$$
\operatorname{cindex}(D)=\max \{\operatorname{cindex}(D: u, v) \mid u, v \in V(D)\}
$$

Theorem 2.1. Let A be an $n \times n$ irreducible Boolean matrix, with $p(A)=p$. If we denote $r=\lfloor n / p\rfloor$ and $s=n-p r$, we have

$$
\operatorname{cindex}(A) \leq \begin{cases}p \cdot \omega_{r}+s, & \text { when } r>1 \\ s, & \text { when } r=1 \text { and } s>0 \\ 1, & \text { when } r=1 \text { and } s=0\end{cases}
$$

Proof. Let $D=D(A)$ and $V_{0}, V_{1}, \ldots, V_{p-1}$ be p nonempty sets, with $V_{p}=V_{0}$, where each arc of D issues from V_{i} and enters V_{i+1} for some i with $0 \leq i \leq p-1$. Let E_{i} be the subgraph of D^{p} induced by V_{i}, where $0 \leq i \leq p-1$. Then, E_{i} is primitive.

If $r=1$ and $s=0$, we have $\operatorname{cindex}(A)=1$. Further, if $r=1$ and $s>0$, we have $\operatorname{cindex}(D: u, v) \leq s$. Suppose that $r>1$. We claim that $\operatorname{cindex}(D:$ $u, v) \leq p \cdot \omega_{r}+s$ for any two vertices u and v. If $u \in V_{i}$ and $v \in V_{j}$ where $i \neq j$, u and v do not have an l-step common prey for any positive integer l. Thus, $\operatorname{cindex}(D: u, v)=1$. We may suppose that $u, v \in V_{j}$ for some $0 \leq j \leq p-1$. Then, there exists V_{q} such that $\left|V_{q}\right| \leq r$, and there exist walks

$$
u \xrightarrow{f} u^{\prime} \in V_{q} \text { and } v \xrightarrow{f} v^{\prime} \in V_{q},
$$

where $0 \leq f \leq s$. Since cindex $\left(D^{p}: u^{\prime}, v^{\prime}\right) \leq \omega_{\left|V_{q}\right|} \leq \omega_{r}$, we have

$$
\begin{aligned}
\operatorname{cindex}(D: u, v) & \leq f+\operatorname{cindex}\left(D: u^{\prime}, v^{\prime}\right) \\
& \leq s+p \cdot \operatorname{cindex}\left(D^{p}: u^{\prime}, v^{\prime}\right) \\
& \leq s+p \cdot \omega_{r}
\end{aligned}
$$

Thus, we have cindex $(D)=\max \{\operatorname{cindex}(D: u, v) \mid u, v \in V(D)\} \leq p \cdot \omega_{r}+s$.
This establishes the result.

For an $m \times n$ Boolean matrix A, we define its Boolean rank $b(A)$ to be the smallest positive integer b such that for some $m \times b$ Boolean matrix X and $b \times n$ Boolean matrix $Y, A=X Y$. The Boolean rank of the zero matrix is defined to be zero. $A=X Y$ is called a Boolean rank factorization of A.

Proposition 2.2 (Akelbek, Fital, and Shen [1]). Suppose that X and Y are $n \times m$ and $m \times n$ Boolean matrices, respectively, and that neither has a zero line (i.e., row or column).
(i) $X Y$ is primitive if and only if $Y X$ is primitive.
(ii) If $X Y$ and $Y X$ are primitive,

$$
|\operatorname{cindex}(X Y)-\operatorname{cindex}(Y X)| \leq 1
$$

Lemma 2.3. Suppose A is an $n \times m$ Boolean matrix and $A=X Y$ is a Boolean rank factorization of A, where $b(A)=b$. If A has no zero lines, neither X nor Y has a zero line.

Proof. Since A has no zero lines, X has no zero rows and Y has no zero columns. Suppose that X has a zero column, and without loss of generality, let it be the i th column. Let X^{\prime} be the matrix obtained from X by deleting its i th column, and let Y^{\prime} be the matrix obtained from Y by deleting its i th row. Then, X^{\prime} is an $n \times(b-1)$ matrix, Y^{\prime} is a $(b-1) \times m$ matrix, and $X^{\prime} Y^{\prime}=A$. Therefore, the Boolean rank of A is at most $b-1$. This is a contradiction. Hence, X has no zero columns. Similarly, Y has no zero rows. This establishes the result.

Lemma 2.4. Let A be an $n \times n$ Boolean irreducible matrix, with $p(A)=p$, and let $A=X Y$ be a Boolean rank factorization of A, with $b(A)=b$. Then,
(i) $Y X$ is irreducible, with $p(Y X) \geq p$.
(ii) cindex $(X Y) \leq \operatorname{cindex}(Y X)+1$.

Proof. If A is primitive, we have the result by Proposition 2.2. Suppose that $p(A) \geq 2$. Then, we may suppose that

$$
A=\left[\begin{array}{ccccc}
O & A_{0} & O & \cdots & O \\
O & O & A_{1} & \cdots & O \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
O & O & O & \cdots & A_{p-2} \\
A_{p-1} & O & O & \cdots & O
\end{array}\right]
$$

in which the zero matrices on the diagonal are square matrices of orders $n_{0}, n_{1}, \ldots, n_{p-1}$, respectively (see [3]). Further, there exists a permutation matrix P such that

$$
X P=\left[\begin{array}{ccccc}
X_{0} & O & O & \cdots & O \\
O & X_{1} & O & \cdots & O \\
O & O & X_{2} & \cdots & O \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
O & O & O & \cdots & X_{p-1}
\end{array}\right], P^{T} Y=\left[\begin{array}{ccccc}
O & Y_{0} & O & \cdots & O \\
O & O & Y_{1} & \cdots & O \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
O & O & O & \cdots & Y_{p-2} \\
Y_{p-1} & O & O & \cdots & O
\end{array}\right]
$$

where $A_{i}=X_{i} Y_{i}$ is a Boolean rank factorization of A_{i}, with $b\left(A_{i}\right)=b_{i}$. Moreover, $Y X$ is permutationally similar to

$$
\left[\begin{array}{ccccc}
O & Y_{0} X_{1} & O & \cdots & O \tag{1}\\
O & O & Y_{1} X_{2} & \cdots & O \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
O & O & O & \cdots & Y_{p-2} X_{p-1} \\
Y_{p-1} X_{0} & O & O & \cdots & O
\end{array}\right]
$$

in which the zero matrices on the diagonal are square matrices of orders $b_{0}, b_{1}, \ldots, b_{p-1}$, respectively. Let

$$
\begin{aligned}
\bar{A}_{0}= & A_{0} A_{1} \cdots A_{p-2} A_{p-1}=X_{0} Y_{0} X_{1} Y_{1} \cdots X_{p-2} Y_{p-2} X_{p-1} Y_{p-1}, \\
\bar{A}_{1}= & A_{1} A_{2} \cdots A_{p-1} A_{0}=X_{1} Y_{1} X_{2} Y_{2} \cdots X_{p-1} Y_{p-1} X_{0} Y_{0}, \\
& \cdots \\
\bar{A}_{p-1}= & A_{p-1} A_{0} \cdots A_{p-3} A_{p-2}=X_{p-1} Y_{p-1} X_{0} Y_{0} \cdots X_{p-3} Y_{p-3} X_{p-2} Y_{p-2} .
\end{aligned}
$$

For each i, there exists a positive integer l such that $\bar{A}_{i}^{l}=J_{n_{i}}$ since \bar{A}_{i} is primitive. For each i, neither X_{i} nor Y_{i} has a zero line by Lemma 2.3. Then, we have

$$
\begin{aligned}
&\left(Y_{0} X_{1} Y_{1} X_{2} \cdots Y_{p-2} X_{p-1} Y_{p-1} X_{0}\right)^{l+1} \\
&= Y_{0} \bar{A}_{1}^{l}\left(X_{1} Y_{1} X_{2} \cdots Y_{p-2} X_{p-1} Y_{p-1} X_{0}\right) \\
&= Y_{0} J_{n_{1}}\left(X_{1} Y_{1} X_{2} \cdots Y_{p-2} X_{p-1} Y_{p-1} X_{0}\right)=J_{b_{0}} \\
&\left(Y_{1} X_{2} Y_{2} X_{3} \cdots Y_{p-1} X_{0} Y_{0} X_{1}\right)^{l+1} \\
&= Y_{1} \bar{A}_{2}^{l}\left(X_{2} Y_{2} X_{3} \cdots Y_{p-1} X_{0} Y_{0} X_{1}\right) \\
&= Y_{1} J_{n_{2}}\left(X_{2} Y_{2} X_{3} \cdots Y_{p-1} X_{0} Y_{0} X_{1}\right)=J_{b_{1}} \\
& \cdots \\
& \cdots \\
&=\left(Y_{p-1} X_{0} Y_{0} X_{1} \cdots Y_{p-3} X_{p-2} Y_{p-2} X_{p-1}\right)^{l+1} \\
&= Y_{p-1}^{l}\left(X_{0} Y_{0} X_{1} \cdots Y_{p-3} X_{p-2} Y_{p-2} X_{p-1}\right) \\
&\left.Y_{0} X_{1} \cdots Y_{p-3} X_{p-2} Y_{p-2} X_{p-1}\right)=J_{b_{p-1}} .
\end{aligned}
$$

Therefore, $Y X$ is irreducible and $p(Y X) \geq p=p(X Y)$ by (1).
Suppose that $\operatorname{cindex}(X Y)=k$. By the definition of the competition index of an irreducible Boolean matrix,
(2) $\quad A^{k}\left(A^{T}\right)^{k}=(X Y)^{k}\left((X Y)^{T}\right)^{k}=\left[\begin{array}{ccccc}J_{n_{0}} & O & O & \cdots & O \\ O & J_{n_{1}} & O & \cdots & O \\ O & O & J_{n_{2}} & \cdots & O \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ O & O & O & \cdots & J_{n_{p-1}}\end{array}\right]$.

For each i, neither X_{i} nor Y_{i} has a zero line by Lemma 2.3. Then, we have

$$
X_{i} X_{i}^{T} \geq I_{n_{i}} \text { and } Y_{i} Y_{i}^{T} \geq I_{b_{i}}
$$

If we suppose that all subscripts are taken by modulo p, we have

$$
\begin{aligned}
\left(A_{i} A_{i+1} \cdots A_{i+k}\right)\left(A_{i} A_{i+1} \cdots A_{i+k}\right)^{T} & =J_{n_{i}} \\
\left(X_{i} Y_{i} X_{i+1} Y_{i+1} \cdots X_{i+k} Y_{i+k}\right)\left(X_{i} Y_{i} X_{i+1} Y_{i+1} \cdots X_{i+k} Y_{i+k}\right)^{T} & =J_{n_{i}}
\end{aligned}
$$

by (2). Therefore, we have

$$
\begin{aligned}
& \left(Y_{i-1} X_{i} Y_{i} X_{i+1} Y_{i+1} \cdots Y_{i+k} X_{i+k+1}\right)\left(Y_{i-1} X_{i} Y_{i} X_{i+1} Y_{i+1} \cdots Y_{i+k} X_{i+k+1}\right)^{T} \\
= & \left(Y_{i-1} X_{i} Y_{i} X_{i+1} Y_{i+1} \cdots Y_{i+k}\right)\left(X_{i+k+1} X_{i+k+1}^{T}\right)\left(Y_{i-1} X_{i} Y_{i} X_{i+1} Y_{i+1} \cdots Y_{i+k}\right)^{T} \\
\geq & \left(Y_{i-1} X_{i} Y_{i} X_{i+1} Y_{i+1} \cdots Y_{i+k}\right) I_{n_{i+k+1}}\left(Y_{i-1} X_{i} Y_{i} X_{i+1} Y_{i+1} \cdots Y_{i+k}\right)^{T} \\
= & Y_{i-1}\left(X_{i} Y_{i} X_{i+1} Y_{i+1} \cdots Y_{i+k}\right) I_{n_{i+k+1}}\left(X_{i} Y_{i} X_{i+1} Y_{i+1} \cdots Y_{i+k}\right)^{T} Y_{i-1}^{T} \\
= & Y_{i-1} J_{n_{i}} Y_{i-1}^{T}=J_{b_{i-1}} .
\end{aligned}
$$

Then, we have

$$
(Y X)^{k+1}\left((Y X)^{T}\right)^{k+1}=\left[\begin{array}{ccccc}
J_{b_{0}} & O & O & \cdots & O \\
O & J_{b_{1}} & O & \cdots & O \\
O & O & J_{b_{2}} & \cdots & O \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
O & O & O & \cdots & J_{b_{p-1}}
\end{array}\right]
$$

Thus, we have cindex $(Y X) \leq k+1=\operatorname{cindex}(X Y)+1$. This establishes the result.

In Lemma 2.4, the condition that A is irreducible is required. See Example 2.5.

Example 2.5. Consider the Boolean reducible matrix A such that

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then, we have $b(A)=4$ and a Boolean rank factorization $A=X Y$ for X and Y such that

$$
X=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], Y=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Then, we have

$$
Y X=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We have $\operatorname{cindex}(A)=3$ and $\operatorname{cindex}(Y X)=1$. Therefore, we have

$$
\operatorname{cindex}(X Y)>\operatorname{cindex}(Y X)+1
$$

Proposition 2.6 (Akelbek, Fital, and Shen [1]). Suppose that A is an $n \times n$ $(n \geq 2)$ primitive Boolean matrix with Boolean rank $b(A)=b$. Then,

$$
\operatorname{cindex}(A) \leq \omega_{b}+1
$$

If $3 \leq b \leq n-1$, the equality holds if and only if A is permutationally similar to one of the forms M_{1}, M_{3}, and M_{5} in Table 1.

In Table 1, the rows and columns of M_{1}, M_{3}, and M_{5} are partitioned conformally, so that each diagonal block is square, and the top left-hand side submatrix common to each has b blocks in its partition.

Theorem 2.7. Suppose that A is an $n \times n$ irreducible Boolean matrix with Boolean $\operatorname{rank} b(A)=b$, where $3 \leq b \leq n-1$. Then, we have

$$
\operatorname{cindex}(A) \leq \omega_{b}+1
$$

The equality holds if and only if A is permutationally similar to one of the forms M_{1}, M_{3}, and M_{5} in Table 1.

Proof. If $p(A)=1$, we have the result by Proposition 2.6. Suppose that $p(A) \geq$ 2. We claim that cindex $(A)<\omega_{b}+1$. Let $A=X Y$ be a Boolean rank factorization of A. Then, $Y X$ is a $b \times b$ irreducible matrix, with $p=p(Y X) \geq p(X Y) \geq 2$ by Lemma 2.4. By Lemma 2.4 and Proposition 1.2, we have

$$
\operatorname{cindex}(A) \leq \operatorname{cindex}(\mathrm{YX})+1 \leq \begin{cases}p \cdot \omega_{r}+p, & \text { when } r \geq 2 \\ p, & \text { when } r<2\end{cases}
$$

where $r=\left\lfloor\frac{b}{p}\right\rfloor$. If $r<2$, we obtain the result. Suppose that $2 \leq p \leq\left\lfloor\frac{b}{2}\right\rfloor$. Then, we have

$$
\operatorname{cindex}(A) \leq \operatorname{cindex}(\mathrm{YX})+1 \leq p \cdot \omega_{r}+p \leq \frac{b^{2}}{2 p}+\frac{5}{2} p-b
$$

Let $g(p)=\frac{b^{2}}{2 p}+\frac{5}{2} p-b\left(2 \leq p \leq\left\lfloor\frac{b}{2}\right\rfloor\right)$. Then, $g(p)$ attains the maximum value when $p=2$. $g(2)=\frac{b^{2}-4 b+20}{4}<\left\lceil\frac{b^{2}-2 b+2}{2}\right\rceil+1=\omega_{b}+1$ since $b \geq 2 p \geq 4$. Then,

$$
\operatorname{cindex}(A)<\omega_{b}+1
$$

This establishes the result.

3. A bound on the competition index of a nearly reducible matrix

The irreducible Boolean matrix A is called nearly reducible if each matrix obtained from A by the replacement of a 1 with a 0 is a reducible Boolean matrix. Thus, the digraph D is minimally strong if and only if its adjacency matrix A is nearly reducible.

The term rank of a Boolean matrix A, denoted by $t(A)$, is defined to be the largest number of 1 s in A, with at most one 1 in each column and at most one 1 in each row. Then, we have $b(A) \leq t(A)$.

Proposition 3.1 (Cho and Kim [4]). Let D be a strongly connected digraph of order $n(\geq 3)$. If $p(D)>\frac{n}{2}$, we have

$$
\operatorname{cindex}(D) \leq\left\lfloor\frac{n-1}{2}\right\rfloor
$$

Theorem 3.2. Let A be a nearly reducible $n \times n$ Boolean matrix, where $n \geq 8$. Then, we have

$$
\operatorname{cindex}(A) \leq\left\lceil\frac{(n-2)^{2}+1}{2}\right\rceil+1
$$

The equality holds if and only if A is permutationally similar to

$$
\left[\begin{array}{cccccc|c}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Proof. Denote $p=p(A)$.
Case 1. $p>\frac{n}{2}$.
By Proposition 3.1, we have $\operatorname{cindex}(D) \leq\left\lfloor\frac{n-1}{2}\right\rfloor<\left\lceil\frac{(n-2)^{2}+1}{2}\right\rceil+1$.
Case 2. $2 \leq p \leq \frac{n}{2}$.
By Theorem 2.1, we have

$$
\operatorname{cindex}(A) \leq p \cdot \omega_{n / p}+p-1 \leq \frac{n^{2}}{2 p}+\frac{5}{2} p-n-1
$$

Let $g(p)=\frac{n^{2}}{2 p}+\frac{5}{2} p-n-1\left(2 \leq p \leq \frac{n}{2}\right)$. Then, $g(p)$ attains the maximum value when $p=2$. $g(2)=\frac{n^{2}-4 n+16}{4}<\left\lceil\frac{(n-2)^{2}+1}{2}\right\rceil+1$, where $n \geq 8$.
Case 3. $p=1$.
If $b(A) \leq n-2$, we have $\operatorname{cindex}(A) \leq \omega_{n-2}+1<\left\lceil\frac{(n-2)^{2}+1}{2}\right\rceil+1$ by Theorem 2.7.

If $b(A)=n-1$, we have

$$
\operatorname{cindex}(A) \leq \omega_{n-1}+1=\left\lceil\frac{(n-2)^{2}+1}{2}\right\rceil+1
$$

and the equality holds if and only if A is permutationally similar to

$$
\left[\begin{array}{cccccc|c}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right],
$$

by Theorem 2.7.
Suppose that $b(A)=n$. Then we have $t(A)=n$ since $t(A) \geq b(A)$. Thus we have an $n \times n$ permutation submatrix in A. If there is no n-cycle in $D=D(A)$, $s(D)=s \leq\left\lfloor\frac{n}{2}\right\rfloor$. By Proposition 1.1 we have $\operatorname{cindex}(A)<\left\lceil\frac{(n-2)^{2}+1}{2}\right\rceil+1$ since $n \geq 8$. If there is an n-cycle in D, D is isomorphic to an n-cycle since A is a nearly reducible Boolean matrix. However, $p\left(C_{n}\right)=n$ is not primitive. This establishes the result.

References

[1] M. Akelbek, S. Fital, and J. Shen, A bound on the scrambling index of a primitive matrix using Boolean rank, Linear Algebra Appl. 431 (2009), no. 10, 1923-1931.
[2] M. Akelbek and S. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl. 430 (2009), no. 4, 1111-1130.
[3] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
[4] H. H. Cho and H. K. Kim, Competition indices of strongly connected digraphs, Bull. Korean Math. Soc. 48 (2011), no. 3, 637-646.
[5] H. H. Cho, S.-R. Kim, and Y. Nam, The m-step competition graph of a digraph, Discrete Appl. Math. 105 (2000), no. 1-3, 115-127.
[6] H. K. Kim, Competition indices of tournaments, Bull. Korean Math. Soc. 45 (2008), no. 2, 385-396.
[7] B. Liu and H.-J. Lai, Matrices in Combinatorics and Graph Theory, Kluwer Academic Publishers, 2000.
[8] J. Shao, The exponent set of symmetric primitive matrices, Sci. Sinica Ser. A 30 (1987), no. 4, 348-358.
[9] J. Shao and Q. Li, The indices of convergence reducible Boolean matrices, Acta Math. Sinica 33 (1991), 13-28.
[10] J. Shen, Proof of a conjecture about the exponent of primitive matrices, Linear Algebra Appl. 216 (1995), 185-203.

THE COMPETITION INDEX OF A NEARLY REDUCIBLE BOOLEAN MATRIX 2011

Han Hyuk Cho

Department of Mathematics Education
Seoul National University
Seoul 151-748, Korea
E-mail address: hancho@snu.ac.kr
Hwa Kyung Kim
Department of Mathematics Education
Sangmyung University
Seoul 110-743, Korea
E-mail address: indices@smu.ac.kr

[^0]: Received September 8, 2012.
 2010 Mathematics Subject Classification. 05C20, 05C50.
 Key words and phrases. competition graph, m-step competition graph, competition index, competition period, scrambling index.

 This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2012R1A1A2001154).

