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THE COMPETITION INDEX OF
A NEARLY REDUCIBLE BOOLEAN MATRIX

HAN Hyuk CHO AND HwA KyunGg Kim

ABSTRACT. Cho and Kim [4] have introduced the concept of the compe-
tition index of a digraph. Similarly, the competition index of an n X n
Boolean matrix A is the smallest positive integer g such that AIT#(AT)a+?
= AatT+i(AT)a+7+% for some positive integer r and every nonnegative
integer i, where AT denotes the transpose of A. In this paper, we study
the upper bound of the competition index of a Boolean matrix. Using
the concept of Boolean rank, we determine the upper bound of the com-
petition index of a nearly reducible Boolean matrix.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [3, 7]. A
Boolean matriz is a matrix over the binary Boolean algebra {0,1}. For m x n
Boolean matrices A = (a;;) and B = (b;;), we say that B is dominated by A
(denoted by B < A) if b;; < a;; for all i and j. We denote the m x n all-ones
Boolean matrix by Jy,, (and by J, if m = n), the m x n all-zeros Boolean
matrix by O, (and by O, if m = n), and the n x n identity Boolean matrix
by I,. The subscripts m and n will be omitted whenever their values are clear
from the context.

Let D = (V, E) denote a digraph (directed graph) with vertex set V = V(D)
and arc set E = F(D). Loops are permitted but multiple arcs are not. An
x — y walk in a digraph D is a sequence of vertices z,v1,..., v,y € V(D) and
a sequence of arcs (z,v1), (v1,v2),..., (v, y) € E(D), where the vertices and
arcs are not necessarily distinct. A closed walk is an x — y walk where x = y.
A cycle is a closed © — y walk in which all vertices except « and y are distinct.

The length of a walk W is the number of arcs in W. The notation z LA y is
used to indicate that there is a x — y walk of length k. An [-cycle is a cycle of
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length {. If the digraph D has at least one cycle, the length of a shortest cycle
in D is called the girth of D, denoted by s(D).

For an n x n Boolean matrix A = (a;;), its digraph, denoted by D(A), is
the digraph with vertex set V(D(A)) = {v1,v2,...,v,}, and (v;,v;) is an arc
of D(A) if and only if a;,; = 1. Using Boolean arithmetic (1+1=1,0+0=0,
14+0=1), AB and A+ B are Boolean matrices if A and B are Boolean matrices.
Note that for a positive integer k, the (Boolean) k-th power A* = [b;;] of A is
a Boolean matrix such that b;; = 1 if and only if there is a directed walk of
length % from v; to v; in D(A).

A digraph D is called strongly connected if for each pair of vertices x and
y in V(D), there is a walk from « to y. For a strongly connected digraph D,
the index of imprimitivity of D is the greatest common divisor of the lengths
of the cycles in D, and it is denoted by p(D). If D is a trivial digraph of order
1, p(D) is undefined. A strongly connected digraph D is primitive if p(D) = 1.
If D is primitive, there exists some positive integer [ such that there is a walk
of length exactly [ from each vertex x to each vertex y. The smallest such [ is
called the exponent of D, denoted by exp(D). Exponents have been studied by
several researchers [3, 7, 8, 9, 10].

We say that a Boolean matrix A is permutationally similar to a Boolean
matrix B if there exists a permutation Boolean matrix P satisfying B = PAPT,
where PT denotes the transpose of P. The Boolean matrix A is called reducible
if A is permutationally similar to a Boolean matrix of the form

o]
A Az |7
where A; and As are square Boolean matrices of order at least one. If A is
not reducible, it is called érreducible. A is irreducible if and only if D(A) is
strongly connected (see [3]). The Boolean matrix A is called primitive if D(A)
is primitive.

Let D be a digraph (with or without loops) with the vertex set {v1,va,..
vnt. Given a positive integer m, we say that a vertex vy of D is an m-step

*

common prey of v; and v; if v; 2 vy, and v 2 k. Then, the m-step competition
graph of D, denoted by C™ (D), has the same vertex set as D, and there is an
edge between vertices v; and v; (v; # v;) if and only if v; and v; have an
m-step common prey in D. The m-step digraph of D, denoted by D™, has the
same vertex set as D and an arc (v;,v;) if and only if v; 5 v;. Then, we have
C™(D) = C(D™) for each positive integer m (see [5]).
Consider the sequence
D,D? D3,...,D™

P

Then, there exists the smallest positive integer ¢ such that D¢ = DI%" for
some positive integer r. Such an integer ¢ is called the index of D, and it is
denoted by index(D). There also exists the smallest positive integer p such
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that DY = D97P; such an integer is called the period of D, and it is denoted by
period(D).
Now, consider the competition graph sequence

C(D),C(D?),C(D?),...,C(D™),....

There exists the smallest positive integer ¢ such that C(D9T%) = C(DIT"+7)
for some positive integer r and every nonnegative integer 7. Such an integer
q is called the competition index of D, and it is denoted by cindex(D). Let
g = cindex(D). Then, there exists the smallest positive integer p such that
C(D+%) = C(DIP*%) for every nonnegative integer i. Such an integer p is
called the competition period of D, and it is denoted by cperiod(D).

An analogous definition for the competition index and competition period
can be given for a Boolean matrix. The competition index of a Boolean ma-
trix A, denoted by cindex(A), is the smallest positive integer ¢ such that
AT (AT)a+e = gatr+i(AT)aFr+i for some positive integer 7 and every non-
negative integer i. The competition period of a Boolean matrix A, denoted
by cperiod(4), is the smallest positive integer p such that Ad+ti(AT)a+i =
ATHPH(ATYa+P+i for ¢ = cindex(A) and every nonnegative integer i. If A is
the adjacency matrix of a digraph D, then we have cindex(A) = cindex(D)
and cperiod(A) = cperiod(D). As a result, throughout the paper, as long as
no confusion occurs, we use the digraph D and the adjacency matrix A(D)
interchangeably.

Akelbek and Kirkland [2] introduced the scrambling index of a primitive
digraph. The scrambling index is the smallest positive integer k such that for

. . . k
every pair of vertices u and v, there exists a vertex w such that v — w and

v 5 win D. Akelbek and Kirkland’s definition of the scrambling index is the
same as our definition of the competition index in the case of a primitive digraph
(see [6]). In [2], they presented the following result regarding the scrambling
index.

Proposition 1.1 (Akelbek and Kirkland [2]). Let D be a primitive digraph of
order n. and girth s. Then,

n—s+ (551) n, when s is odd,
cindex(D) <
n—s+ ("771) s, when s is even.
For a positive integer n > 3, we define

o1 0 --- 0
oo 1 --- 0

— =
OC)...
o O
O =
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Cho and Kim [4] presented the following result regarding the upper bound
of the competition index of a strongly connected digraph.

Proposition 1.2 (Cho and Kim [4]). Let A be an irreducible n x n Boolean
matriz, where n > 3. Then, we have

cindex(A4) < wy,.

The equality holds if and only if A is permutationally similar to W,.

2. A bound on the competition index of an irreducible Boolean
matrix using Boolean rank

For a pair of vertices u and v, let cindex(D : u,v) denote the smallest positive
integer m such that u and v have an [-step common prey whenever [ > m. If
there is no such positive integer m for u and v, we let cindex(D : u,v) = 1.
Further, we let cindex(D : u,u) = 1. If D is strongly connected,

cindex(D) = max{cindex(D : u,v) | u,v € V(D)}.

Theorem 2.1. Let A be an n x n irreducible Boolean matriz, with p(A) = p.
If we denote r = |n/p| and s =n — pr, we have

p-wr+s, whenr>1,
cindex(A4) << s, when r =1 and s > 0,
1, when r =1 and s = 0.

Proof. Let D = D(A) and Vp, V4, ..., V,—1 be p nonempty sets, with V,, = Vg,
where each arc of D issues from V; and enters V;;1 for some ¢ with 0 <i < p—1.
Let E; be the subgraph of DP induced by V;, where 0 < ¢ < p—1. Then, E; is
primitive.

If r =1 and s = 0, we have cindex(A) = 1. Further, if r = 1 and s > 0,
we have cindex(D : u,v) < s. Suppose that r > 1. We claim that cindex(D :
u,v) < p-wyp+ s for any two vertices u and v. If u € V; and v € V; where i # j,
u and v do not have an [-step common prey for any positive integer [. Thus,
cindex(D : u,v) = 1. We may suppose that u,v € V; for some 0 < j <p—1.
Then, there exists V; such that |V;| < r, and there exist walks

uLu'E‘/}ZandviHJ'qu,
where 0 < f < s. Since cindex(DP : v/, v") < wyy,| < wp, we have

[+ cindex(D : u/,v")
s+ p - cindex(D? : v/, v")

cindex(D : u,v)

ININCIA

S+p-wp.

Thus, we have cindex(D) = max{cindex(D : u,v) | u,v € V(D)} <p-w, + s.
This establishes the result. (]
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For an m x n Boolean matrix A, we define its Boolean rank b(A) to be the
smallest positive integer b such that for some m x b Boolean matrix X and b xn
Boolean matrix Y, A = XY. The Boolean rank of the zero matrix is defined
to be zero. A = XY is called a Boolean rank factorization of A.

Proposition 2.2 (Akelbek, Fital, and Shen [1]). Suppose that X and Y are
n X m and m X n Boolean matrices, respectively, and that neither has a zero
line (i.e., row or column).

(i) XY is primitive if and only if YX is primitive.

(i) If XY and Y X are primitive,

|cindex(XY") — cindex(Y X)| < 1.

Lemma 2.3. Suppose A is an n xm Boolean matriz and A = XY is a Boolean
rank factorization of A, where b(A) =b. If A has no zero lines, neither X nor
Y has a zero line.

Proof. Since A has no zero lines, X has no zero rows and Y has no zero columns.
Suppose that X has a zero column, and without loss of generality, let it be the
1th column. Let X’ be the matrix obtained from X by deleting its ¢th column,
and let Y’ be the matrix obtained from Y by deleting its ith row. Then, X’ is
ann X (b—1) matrix, Y’ is a (b— 1) x m matrix, and X'Y’ = A. Therefore, the
Boolean rank of A is at most b — 1. This is a contradiction. Hence, X has no
zero columns. Similarly, Y has no zero rows. This establishes the result. O

Lemma 2.4. Let A be an n x n Boolean irreducible matriz, with p(A) = p,
and let A= XY be a Boolean rank factorization of A, with b(A) =b. Then,
(i) YX is irreducible, with p(Y X) > p.
(ii) cindex(XY') < cindex(Y X) + 1.

Proof. If A is primitive, we have the result by Proposition 2.2. Suppose that
p(A) > 2. Then, we may suppose that

O A4 O --- O
O O A -+ O
A=| oo
O O O - Aps
A, O O --- O
in which the zero matrices on the diagonal are square matrices of orders
Ng, N1, ...,Np—1, respectively (see [3]). Further, there exists a permutation
matrix P such that
Xo O O --- O O Yy O --- O
o X3 O -+ O O oYW --- O

XP = O O Xy - 0] ,PTY:

0O 0 0 - X, Y,
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where A; = X;Y; is a Boolean rank factorization of A;, with b(A;) = b;. More-
over, Y X is permutationally similar to

0O YoX; O 9,
0 0O YiX, - O
(1) : : S : ;
9, 0O 0 - Y, 12X,
Y1 X, O O - O

in which the zero matrices on the diagonal are square matrices of orders
bo, b1,...,bp—1, respectively. Let

Ay = AgAi-- Ay 2A, 1 = XoYoXaY1 - Xp oYy 0 Xy Y1,
Ay = AjAy- Ay 1A= X0 XpYs - X 1Y, 1 XoYD,
Apr = Ay 1Ay Ay 3Ay =X, 1Y, 1 XoYo- - Xp 3V, 3X), 2V, 0.

For each i, there exists a positive integer [ such that Al = J,, since 4; is
primitive. For each ¢, neither X; nor Y; has a zero line by Lemma 2.3. Then,
we have

YoX1YiXo---Y, 20X, 1Y, 1Xo)' !
= Yo AL (X1Y1Xs Yy oX, 1Y,—1X0)
= YoJu,(XiV1Xe - Yy 2X, 1Y, 1X0) = Jby,

(Y1 X2Ya X5+ Y1 XoYo Xy )T
= Y1A5(XpY2 X3+ Y, 1 XYo X1)
= Y1Jn, (XoYo X5 Y, 1 XY X1) = by,

(Y1 XoYo X1 -+ Y, 3X, oY, 20X, 1)}
Yo 1 Ap(XoYo X1+ Yy sXp oYy 2Xp 1)
= Y1 (XoYo X Y3 Xpo oYy 2 Xpo1) = Jy .
Therefore, Y X is irreducible and p(Y X) > p = p(XY') by (1).

Suppose that cindex(XY) = k. By the definition of the competition index
of an irreducible Boolean matrix,

J O O 0
O Jn, O 0
(2) AMATY = XY)H (XY= | O O w0

O 0 O - Ju ,
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For each ¢, neither X; nor Y; has a zero line by Lemma 2.3. Then, we have
X XI' > 1, and ;YT > Iy,
If we suppose that all subscripts are taken by modulo p, we have
(AiAipr - Aip) (AiAipr - Ai)” = Ty,
(X3YiXip1Yisr - XipaYirn) (X YiXip1 Yiwr - XonnYorn)T = T,
by (2). Therefore, we have
(Vi1 XiYiXi1Yigr - Yigu Xipn) (Vi1 XaYiXi 1 Yigr -+ Yigr Xigng1) "
= (Yio1 X;YiXip1Yigr - Yir) Xiwwr1 X o) Yic1 XaYiXis1 Y - Yiag) T
> (Yiaan XiYiXo1Yigr - Yign) L (Vi1 XiYiXi1Yigr - Yigr) "

M4 k+1
=Yi1(X;YiXi1Yipr - Yir) L (XiYViXi1Yipr - Yig) 'YL,

Mitk+1
= i—l‘]niyvirlllz‘]bifr
Then, we have
J, O O --- O
o J, O --- O
VX)) = | OO e O

O 0 O - Jy,_,
Thus, we have cindex(YX) < k4 1 = cindex(XY) + 1. This establishes the
result. O

In Lemma 2.4, the condition that A is irreducible is required. See Example
2.5.

Example 2.5. Consider the Boolean reducible matrix A such that
01000

o O OO
O O OO
O = OO
O O OO
OO~ OO
_ o O O O

o
o
o

Then, we have b(A) = 4 and a Boolean rank factorization A = XY for X and
Y such that

1000

0100 010000

0000 001000
XﬁOOlO’Y700001O

0001 001001

0000
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Then, we have

YX =

oS O OO
o= O o

10
00
00
00

We have cindex(A) = 3 and cindex(Y X)) = 1. Therefore, we have

cindex(XY') > cindex(Y X) + 1.

Proposition 2.6 (Akelbek, Fital, and Shen [1]). Suppose that A is an n X n
(n > 2) primitive Boolean matriz with Boolean rank b(A) = b. Then,

cindex(A4) < wp + 1.

If 3 < b <n—1, the equality holds if and only if A is permutationally similar
to one of the forms My, M3, and M5 in Table 1.

In Table 1, the rows and columns of M;, M3, and Ms are partitioned con-
formally, so that each diagonal block is square, and the top left-hand side
submatrix common to each has b blocks in its partition.

Theorem 2.7. Suppose that A is an n X n irreducible Boolean matrix with
Boolean rank b(A) = b, where 3 <b<n —1. Then, we have

cindex(A4) < wp + 1.

The equality holds if and only if A is permutationally similar to one of the
forms My, M3, and Ms in Table 1.

Proof. If p(A) = 1, we have the result by Proposition 2.6. Suppose that p(A) >
2. We claim that cindex(A4) < wp+1. Let A = XY be a Boolean rank factoriza-
tion of A. Then, Y X is a bxb irreducible matrix, with p = p(Y X) > p(XY) > 2
by Lemma 2.4. By Lemma 2.4 and Proposition 1.2, we have

. . p-wy+p, whenr>2,
cindex(A) < cindex(YX) +1 < { P, when r < 2,

where r = L—I;J. If r < 2, we obtain the result. Suppose that 2 < p < LgJ
Then, we have

2

b 5
cindex(A) < cindex(YX)+1<p-w,+p < % + 2P~ b.
p

Let g(p) = % + %p -b2<p< L%J) Then, g(p) attains the maximum value

when p = 2. g(2) = b2_44b+20 < [b2—§b+2—‘ +1 =wp+1since b > 2p > 4. Then,

cindex(A) < wyp + 1.
This establishes the result. O
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3. A bound on the competition index of a nearly reducible matrix

The irreducible Boolean matrix A is called nearly reducible if each matrix
obtained from A by the replacement of a 1 with a 0 is a reducible Boolean
matrix. Thus, the digraph D is minimally strong if and only if its adjacency
matrix A is nearly reducible.

The term rank of a Boolean matrix A, denoted by t(A), is defined to be the
largest number of 1s in A, with at most one 1 in each column and at most one
1 in each row. Then, we have b(A4) < t(A).

Proposition 3.1 (Cho and Kim [4]). Let D be a strongly connected digraph

of order n(>3). If p(D) > %, we have

cindex(D) < {”2 1J .

Theorem 3.2. Let A be a nearly reducible n X n Boolean matrix, where n > 8.

Then, we have

2)2+1
¢—‘+1'

cindex(A) < [(” .

The equality holds if and only if A is permutationally similar to

(01 0 0 - 0]0
0 0 1 0 00
0 0 0 1 0|1
0 0 0 0 1]0
10 0 0 0]o0
1 0 0 0 0[]0

Proof. Denote p = p(A).
Case 1. p> 3.
By Proposition 3.1, we have cindex(D) < |25 ] < [%w + 1.
Case 2. 2<p< 3.
By Theorem 2.1, we have
n? 5
cindex(A) <p-wp/p +p—1< %jL Fp—n— 1.

Let g(p) = 72‘—; + gpf n—1(2<p < %). Then, g(p) attains the maximum value

when p = 2. ¢(2) = "2_44"+16 < Pnf?zﬂ—‘ + 1, where n > 8.
Case 3. p=1.
2
If b(A) < n — 2, we have cindex(4) < w,_2+1< {w—‘ + 1 by Theorem
2.7.
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If 5(A) = n — 1, we have

and

—-2)2+1
cindex(A) <wp_1+1= [(n%-‘ +1,

the equality holds if and only if A is permutationally similar to
01 0 0 --- 0|07
0 0 1 0 010
0 0 0 1 01 |>
0 0 0 0 1|0
10 0 0 0|0
| 1 0 0 0 0]0 |

by Theorem 2.7.
Suppose that b(A) = n. Then we have t(A) = n since t(A) > b(A). Thus we
have an n x n permutation submatrix in A. If there is no n-cycle in D = D(A),

s(D) = s < |%]. By Proposition 1.1 we have cindex(A) < {%—‘ +1 since
n > 8. If there is an n-cycle in D, D is isomorphic to an n-cycle since A is a

nearly reducible Boolean matrix. However, p(C,,) = n is not primitive. This
establishes the result. O
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