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THE WINTNER THEOREM IN UNITAL COMPLETE

RANDOM NORMED ALGEBRAS

Yuehan Tang

Abstract. The main purpose of this paper is to give the Wintner theo-
rem in unital complete random normed algebras which is a random gen-
eralization of the classical Wintner theorem in Banach algebras. As an
application of the Wintner theorem in unital complete random normed
algebras, we also obtain that the identity operator on a complete random
normed module is not a commutator.

1. Introduction

The Wintner theorem is important in classical Banach algebras which has
attracted many authors’ attention since it is proved in 1947 by Wintner [19].
The famous theorem is closely related to the study of commutators of operators
[18].

The notion of a random normed module (briefly, an RN module) was pre-
sented in [2] and subsequently elaborated in [6], which is a random general-
ization of that of a normed space. The theory of random conjugate spaces
for RN modules is a powerful tool for the deep development of RN modules.
The theory of RN modules together with their random conjugate spaces has
undergone a systematic and deep development [3, 5, 11, 12] and found many
important applications to various topics, e.g., in best approximation [11, 13],
in representation of the dual of Lebesgue-Bochner function spaces [7], in ge-
ometry of Banach spaces [3], in the study of measurability problems [8] and in
particular also in the recent study of conditional risk measures [9, 10]. Banach
algebra is an important part of functional analysis [14], thus we recently intro-
duced the notion of random normed algebras in the framework of RN modules
and further established some basic facts on complete random normed algebras
[15, 16, 17].

Based on the work of [17], in this paper we will establish the Wintner theorem
in a unital complete random normed algebra. Precisely speaking, we first give
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the relationship between the random spectra of xy and yx and then, as a
random generalization of the classical Wintner theorem, we obtain the Wintner
theorem in a unital complete random normed algebra by use of the relationship
and the random spectral radius formula established in [17]. As an application
of the Wintner theorem in unital complete random normed algebras, we also
obtain that the identity operator on a complete random normed module is not
a commutator.

The remainder of this paper is organized as follows: in Section 2 we give
some necessary terminology and notation and in Section 3 we give the main
results and their proofs.

2. Preliminaries

Throughout this paper, N denotes the set of positive integers, K the scalar
field R of real numbers or C of complex numbers, (Ω,F , P ) a probability space,
L̄0(F , R) the set of equivalence classes of extended real-valued F -random vari-
ables on Ω, L0(F ,K) the algebra of equivalence classes of K-valued F -random
variables on Ω.

It is well known from [1] that L̄0(F , R) is a complete lattice under the
ordering 6: ξ 6 η if and only if ξ0(ω) 6 η0(ω) for P -almost all ω in Ω
(briefly, a.s.), where ξ0 and η0 are arbitrarily chosen representatives of ξ and
η, respectively. Furthermore, every subset A of L̄0(F , R) has a supremum,
denoted by ∨A, and an infimum, denoted by ∧A, and there exist two sequences
{an, n ∈ N} and {bn, n ∈ N} in A such that ∨n>1 an = ∨A and ∧n>1 bn =
∧A. If, in addition, A is directed (accordingly, dually directed), then the
above {an, n ∈ N} (accordingly, {bn, n ∈ N}) can be chosen as nondecreasing
(accordingly, nonincreasing). Finally L0(F , R), as a sublattice of L̄0(F , R), is
complete in the sense that every subset with an upper bound has a supremum
(equivalently, every subset with a lower bound has an infimum).

Specially, let L̄0
+ = {ξ ∈ L̄0(F , R) | ξ > 0} and L0

+ = {ξ ∈ L0(F , R) | ξ > 0}.
Besides the equivalence classes of F -random variables, we also use the equiv-

alence classes of F -measurable sets. Let A ∈ F , then the equivalence class
of A, denoted by Ã, is defined by Ã = {B ∈ F : P (A△B) = 0}, where

A△B = (A\B) ∪ (B\A) is the symmetric difference of A and B, and P (Ã) is
defined to be P (A).

As usual, we also make the following convention: for any ξ ∈ L0(F , C),
[ξ = 0] and [ξ 6= 0] stand for the equivalence classes of the F -measurable set
{ω ∈ Ω : ξ0(ω) = 0} and {ω ∈ Ω : ξ0(ω) 6= 0}, respectively, where ξ0 is an
arbitrarily selected representative of ξ.

Definition 2.1 ([6]). An ordered pair (S, ‖ · ‖) is called a random normed
module (briefly, an RN module) over K with base (Ω,F , P ) if S is a left
module over the algebra L0(F ,K) and ‖ · ‖ is a mapping from S to L0

+ such
that the following conditions are satisfied:

(RNM -1) ‖ξx‖ = |ξ|‖x‖, ∀ξ ∈ L0(F ,K), x ∈ S;
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(RNM -2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ S;
(RNM -3) ‖x‖ = 0 implies x = 0 (the zero element in S).

Where ‖x‖ is called the L0-norm of the vector x in S.

In this paper, given an RN module (S, ‖ · ‖) over K with base (Ω,F , P ), it
is always assumed that (S, ‖ · ‖) is endowed with its (ǫ, λ)-topology: for any
ǫ > 0, 0 < λ < 1, let N(ǫ, λ) = {x ∈ S | P{ω ∈ Ω : ‖x‖(ω) < ǫ} > 1 − λ},
then the family U0 = {N(ǫ, λ) | ǫ > 0, 0 < λ < 1} forms a local base at the null
element 0 of some metrizable linear topology for S, called the (ǫ, λ)-topology
for S.

Definition 2.2 ([17]). An ordered pair (S, ‖ · ‖) is called a random normed
algebra (briefly, an RN algebra) over K with base (Ω,F , P ) if (S, ‖ · ‖) is an
RN module over K with base (Ω,F , P ) and also a ring such that the following
two conditions are satisfied:

(1) (ξ · x)y = x(ξ · y) = ξ · (xy) for all ξ ∈ L0(F ,K) and all x, y ∈ S;
(2) the L0-norm ‖ · ‖ is submultiplicative, that is, ‖xy‖ ≤ ‖x‖‖y‖ for all

x, y ∈ S.
Furthermore, the RN algebra is said to be unital if it has the identity element

e and ‖e‖ = 1. As usual, the RN algebra (S, ‖ · ‖) is said to be complete if the
RN module (S, ‖ · ‖) is complete.

Example 2.1 ([17]). Let (X, ‖ · ‖) be a normed algebra over C and L0(F , X)
be the RN module of equivalence classes of X-valued F -random variables on
(Ω,F , P ). Define a multiplication · : L0(F , X) × L0(F , X) → L0(F , X) by
x · y=the equivalence class determined by the F -random variable x0y0, which
is defined by (x0y0)(ω) = (x0(ω)) · (y0(ω)), ∀ω ∈ Ω, where x0 and y0 are
arbitrarily chosen representatives of x and y in L0(F , X), respectively. Then
(L0(F , X), ‖·‖) is an RN algebra, in particular L0(F , C) is a unital RN algebra
with identity 1.

Definition 2.3 ([17]). Let (S, ‖ · ‖) be an RN algebra with identity e over C
with base (Ω,F , P ), and A be any given element in F such that P (A) > 0.

An element x ∈ S is invertible on A if there exists y ∈ S such that ĨA · xy =
ĨA ·yx = ĨA ·e. Clearly, ĨA ·y is unique and called the inverse on A of x, denoted
by x−1

A . Let G(S,A) denote the set of elements of S which are invertible on

A. Then ĨA ·G(S,A) is also a group, and (xy)−1
A = y−1

A x−1
A for any x and y in

ĨA ·G(S,A). For any x ∈ S, the sets

σ(x, S,A) = {ξ ∈ L0(F , C) : ĨA · (ξ · e− x) 6∈ ĨA ·G(S,A)},

σ(x, S) =
⋂

A∈F ,P (A)>0

σ(x, S,A)

are called the random spectrum on A of x in S and the random spectrum of x in
S, respectively, and further their complements ρ(x, S,A) = L0(F , C)\σ(x, S,A)
and ρ(x, S) = L0(F , C) \ σ(x, S) are called the random resolvent set on A of x
and the random resolvent set of x, respectively.
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Definition 2.4 ([17]). Let (S, ‖ · ‖) be an RN algebra with identity e over C
with base (Ω,F , P ). For any x ∈ S, r(x) = ∨{|ξ| : ξ ∈ σ(x, S)} is called the
random spectral radius of x.

Besides, ∧{‖xn‖
1

n | n ∈ N} is denoted by rp(x), for any x in an RN algebra
over K with base (Ω,F , P ).

3. Main results and proofs

Lemma 3.1. Let (S, ‖ · ‖) be an RN algebra with identity e over C with base

(Ω,F , P ). For any x and y in S, we have the following:

σ(xy, S) \ {ξ ∈ L0(F , C) | P ([ξ = 0]) > 0}

= σ(yx, S) \ {ξ ∈ L0(F , C) | P ([ξ = 0]) > 0}.

Proof. For any x and y in S, if ξ /∈ σ(xy, S) and ξ /∈ {ξ ∈ L0(F , C) | P ([ξ =

0]) > 0}, then there exist A ∈ F and z ∈ S such that P (A) > 0 and [ĨA · (ξ ·
e− xy)]z = z[ĨA · (ξ · e− xy)] = ĨA · e.

It follows that ĨA · (xyz) = (ĨAξ) · z − ĨA · e = ĨA · (zxy), and hence

[ĨA · (ξ · e− yx)][ĨA · (e+ yzx)]

= (ĨAξ) · e− ĨA · (yx) + (ĨAξ) · (yzx)− y[ĨA · (xyz)]x

= (ĨAξ) · e− ĨA · (yx) + (ĨAξ) · (yzx)− y[ĨA · (zxy)]x

= (ĨAξ) · e− ĨA · (yx) + yz[ĨA · (ξ · e− xy)]x

= (ĨAξ) · e− ĨA · (yx) + y(ĨA · e)x

= (ĨAξ) · e.

Similarly, [ĨA · (e+ yzx)][ĨA · (ξ · e− yx)] = (ĨAξ) · e.
It follows that (ĨAξ

−1) · (e + yzx) is the inverse on A of ĨA · (ξ · e − yx),
and hence ξ /∈ σ(yx, S). So σ(xy, S) \ {ξ ∈ L0(F , C)) | P ([ξ = 0]) > 0} ⊇
σ(yx, S) \ {ξ ∈ L0(F , C)) | P ([ξ = 0]) > 0}. Since x and y are arbitrary, the
reverse inclusion is an immediate consequence. �

The proof of Lemma 3.2 below is very similar to Lemma 3.1, and thus it is
omitted.

Lemma 3.2. Let (S, ‖ · ‖) be an RN algebra with identity e over C with base

(Ω,F , P ). For any ξ ∈ L0(F , C), let Ã = [ξ 6= 0], where A is a representative

element of [ξ 6= 0]. If P (A) > 0, then for any x and y in S, ξ ∈ σ(xy, S,A) if

and only if ξ ∈ σ(yx, S,A).

The following Lemma 3.3 is about the random spectral radius formula es-
tablished in [17].

Lemma 3.3 ([17]). Let (S, ‖ · ‖) be a unital complete RN algebra with identity

e over C with base (Ω,F , P ). Then for any x ∈ S, σ(x, S) is a nonempty closed

set and r(x) = rp(x).
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Using Lemma 3.1, Lemma 3.2 and Lemma 3.3, we obtain the Wintner the-
orem in unital complete random normed algebras as follows.

Theorem 3.1. Let (S, ‖ · ‖) be a unital complete RN algebra with identity

e over C with base (Ω,F , P ). Then there exist no x and y in S such that

xy − yx = e.

Proof. Otherwise, if there exist x and y in S such that xy− yx = e, and hence
xy = e+ yx, then we first prove that

{ξ ∈ L0(F , C) | P ([ξ = 0]) > 0} * σ(xy, S)
⋃

σ(yx, S).

By the definition of the random spectrum, we obtain

σ(xy, S) = σ(yx, S) + 1(= {ξ + 1 | ξ ∈ σ(yx, S)}).

For any ξ ∈ σ(yx, S), let Ã = [ξ = 0], where A is a representative element of
[ξ = 0]. If P (A) > 0, then for any B ∈ F such that B ⊆ A and P (B) > 0, we
have ξ + 1 ∈ σ(xy, S,B), thus by Lemma 3.2 we have ξ + 1 ∈ σ(yx, S,B), and
hence ξ + n ∈ σ(yx, S,B) (n = 1, 2, . . .). It follows that

nĨA ∈ σ(ĨA · (yx), ĨA · S) (n = 1, 2, . . .).

By Lemma 3.3, we have

nĨA ≤ ĨA‖yx‖ ∈ L0
+(F) (n = 1, 2, . . .),

which is a contradiction.
Similarly, for any η ∈ σ(xy, S), let D̃ = [η = 0], where D is a representative

element of [η = 0], if P (D) > 0, then for any E ∈ F such that E ⊆ D
and P (E) > 0, we have η − 1 ∈ σ(xy, S,E), further, by Lemma 3.2 we have
η − 1 ∈ σ(yx, S,E), and hence

η − n ∈ σ(xy, S,E)(n = 1, 2, . . .).

It follows that

−nĨD ∈ σ(ĨD · (xy), ĨD · S) (n = 1, 2, . . .).

By Lemma 3.3, we have

nĨD ≤ ĨD‖xy‖ ∈ L0
+ (n = 1, 2, . . .),

which is also a contradiction. Therefore we have

{ξ ∈ L0(F , C) | P ([ξ = 0]) > 0} * σ(xy, S)
⋃

σ(yx, S).

For any ξ ∈ σ(yx, S), from xy = e + yx we have ξ + 1 ∈ σ(xy, S). Again by
Lemma 3.1, we have ξ + 1 ∈ σ(yx, S), and hence

ξ + n ∈ σ(yx, S) (n = 1, 2, . . .).

By Lemma 3.3, we have

ξ + n ≤ r(yx) = rp(yx) ∈ L0
+ (n = 1, 2, . . .),

which is again a contradiction. �
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Remark 3.1. Let (S, ‖·‖) be a complete RN module over C with base (Ω,F , P ).
Then the linear space of all a.s. bounded random linear operators on S, denoted
by B(S), is an RN module over C with base (Ω,F , P ) [4]. Define the ring
multiplication · : B(S)×B(S) → B(S) by (T1 ·T2)(x) = T1(T2(x)), ∀x ∈ S and
T1, T2 ∈ B(S). Then B(S) is a unital complete RN algebra with the identity
operator I as the identity.

As an application of the Wintner theorem in unital complete random normed
algebras, we have the following Theorem 3.2.

Theorem 3.2. Let (S, ‖ · ‖) be a complete RN module over C with base

(Ω,F , P ). Then there exist no T1 and T2 in B(S) such that T1T2 − T2T1 = I.

Remark 3.2. We can see that if the base space (Ω,F , P ) of the RN module is
a trivial probability space, i.e., F = {Ω, ∅}, then Theorem 3.1 and Theorem
3.2 automatically degenerate to the corresponding classical cases.
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normed algebras, J. Inequal. Appl. 2012 (2012), 6 pp.
[16] , Random spectral theorems of self-adjoint random linear operators on complete

complex random inner product modules, Linear Multilinear Algebra 61 (2013), no. 3,
409–416.

[17] Y. H. Tang and T. X. Guo, Complete random normed algebras, in press.



THE WINTNER THEOREM 1979

[18] G. Weiss, B(H)-commutators: A historical survey, operator theory, Advances and Ap-
plications 153 (2004), 307–320.

[19] A. Wintner, The unboundedness of quantum-mechanical matrices, Phys. Rev. 71 (1947),
738–739.

College of Mathematics Physics and Information Engineering

Jiaxing University

Jiaxing 314001, P. R. China

E-mail address: tangjohn@126.com


