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ON THE ADMISSIBILITY OF THE SPACE L0(A, X) OF

VECTOR-VALUED MEASURABLE FUNCTIONS

Diana Caponetti, Grzegorz Lewicki, Alessandro Trombetta,

and Giulio Trombetta

Abstract. We prove the admissibility of the space L0(A, X) of vector-
valued measurable functions determined by real-valued finitely additive
set functions defined on algebras of sets.

The notion of admissibility introduced by Klee [7] guarantees that a com-
pact mapping into an admissible Hausdorff topological vector space E can be
approximated by compact finite dimensional mappings. This notion is very
important in degree theory and fixed point theory. It is known that locally
convex spaces are admissible (see [10]). There are some classes of nonlocally
convex spaces which are admissible. Riedrich in [13] proved the admissibility
of the space S(0, 1) of measurable functions and in [12] the admissibility of the
space Lp(0, 1) for 0 < p < 1. The admissibility of other function spaces has
been proved by Mach [6] and Ishii [8]. In [14] it is proved the admissibility of
spaces of Besov-Triebel-Lizorkin type.

Definition 1 ([7]). Let E be a Haudorff topological vector space. A subset Z
of E is said to be admissible if for every compact subset K of Z and for every
neighborhood V of zero in E there exists a continuous mapping H : K → Z
such that dim(span [H(K)])< +∞ and x−Hx ∈ V for every x ∈ K. If Z = E
we say that the space E is admissible.

In this paper we deal with spaces of vector-valued measurable functions and,
as a major fact, instead of σ-additive measures we consider finitely additive set
functions defined on algebras of sets.

Let X be a Banach space, Ω a nonempty set, A a subalgebra of the power
set P(Ω) of Ω and µ : A → R a finitely additive set function. We prove

Received June 20, 2012; Revised March 19, 2013.
2010 Mathematics Subject Classification. 46E30, 46E40.
Key words and phrases. admissible space, finitely additive set function, measurable

function.
This paper has been partly written while the second author visited the Dipartimento
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the admissibility of the space L0(A, X) of all X-valued µ-measurable functions
defined on Ω (see [3, Chp III]).

It is important to notice that in [2] Cauty provides an example of a metric
linear space in which the admissibility fails. Moreover, it is known that in
general L0(A, X) is not homeomorphic to the classical space L0([0, 1], X) of
all Lebesgue measurable functions from [0, 1] to X endowed with the topology
generated by the convergence in measure, and to our knowledge the question if
all the spaces L0(A, X) are homeomorphic or not to an Hilbert space is open.
Some results in this latter direction have appeared in [11, Theorem 4.9] in the
case where µ is a finite nonatomic measure.

1. Preliminaries and notations

Let (X, ‖ · ‖X) be a real or complex Banach space, Ω a nonempty set, A a
subalgebra of the power set P(Ω) of Ω and µ : A → R a finitely additive set
function. Then for everyA ∈ A the total variation |µ|(A) of µ on A is defined by
|µ|(A) = sup

∑n
i=1 |µ(Ai)| where the supremum is taken over all finite sequences

(Ai) of disjoint sets in A with Ai ⊆ A. Then |µ| induces the submeasure
η : P(Ω) → [0,+∞[ defined by η(E) = inf{|µ|(A) : A ∈ A and E ⊆ A} for
E ⊆ Ω. We denote by

S(A, X) =
{

n
∑

i=1

xiχAi
: n ∈ N, xi ∈ X, Ai ∈ A

}

,

the space of all X-valued simple functions on Ω; where χA denotes the cha-
racteristic function of the set A defined on Ω. Let XΩ denote the set of all
functions f from Ω to X . For a function f ∈ XΩ we set

‖f‖0 = inf{α ≥ 0 : η({‖f‖X ≥ α}) ≤ α},

where ‖f‖X denotes the function t → ‖f(t)‖X and {‖f‖X ≥ α} = {t ∈ Ω :
‖f(t)‖X ≥ α}, with the convention inf ∅ = +∞. Then ‖ · ‖0 has the following
properties:

‖0‖0 = 0,

‖f + g‖0 ≤ ‖f‖0 + ‖g‖0,

‖f‖X ≤ ‖g‖X implies ‖f‖0 ≤ ‖g‖0 for f, g ∈ XΩ,(1)

‖yχA‖0 = min{η(A), ‖y‖X} for A ⊆ Ω, y ∈ X and f ∈ XΩ.

A function f ∈ XΩ is said to be a µ-null function if η({‖f‖X ≥ a}) = 0 for any
a > 0. Then by L0(A, X) we denote the F -normed space (in the sense of [9])
given by the closure of the space S(A, X) in (XΩ, ‖ ·‖0), where it is understood
that we identify functions differing by a µ-null function.

We briefly recall the definitions of integrable function and integral for an
integrable function, with respect to µ, of a function f of L0(A, X) as introduced
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in [3]. Let s =
∑n

i=1 xiχAi
be a simple function in S(A, X) and A ∈ A, then

the integral over A of f is defined by
∫

A

f(t) µ(dt) =

n
∑

i=1

xi µ(Ai).

Let L1(X) denote the Lebesgue space of all functions f ∈ L0(A, X) for which
there is a sequence (sn) in S(A, X) converging to f with respect to ‖ · ‖0 such
that

lim
m,n

∫

Ω

‖sm(t)− sn(t)‖X |µ|(dt) = 0.

The sequence (sn) is said to be a determining sequence for f and the integral
over A of f is defined by

∫

A

f(t) µ(dt) = lim
n→∞

∫

A

sn(t)µ(dt), A ∈ A.

For each f ∈ L1(X), ‖f‖1 =
∫

Ω
‖f(t)‖X |µ|(dt) and we also have

‖f‖1 = lim
n→∞

∫

Ω

‖sn(t)‖X |µ|(dt).

Obviously η(A) = |µ|(A) = ‖χA‖1 for A ∈ A. In the sequel we will use the
property given in the following lemma.

Lemma 1. Let f ∈ L1(X). Then ‖f‖0 ≤ ‖f‖
1/2
1 .

Proof. Let s ∈ S(A, X)\{0}. Assume on the contrary that ‖s‖0 > ‖s‖
1/2
1 . Take

α = ‖s‖
1/2
1 , then

‖s‖1 =

∫

Ω

‖s(t)‖X |µ|(dt) ≥

∫

{‖s‖X≥α}

‖s(t)‖X |µ|(dt) ≥ αη({‖s‖X ≥ α})

> ‖s‖1,

which is a contradiction.
Next let f ∈ L1(X) and (sn) a sequence in S(A, X) determining f . Then

we have both limn→∞ ‖sn‖0 = ‖f‖0 and limn→∞ ‖sn‖1 = ‖f‖1, which imply
the assert. �

Let Ba(X) denote the closed ball of radius a > 0. We denote by ρa the
radial projection of X onto Ba(X) defined by

ρa(x) =

{

x if ‖x‖X ≤ a,
a x
‖x‖X

if ‖x‖X > a.

Then we define the mapping Ta : L0(A, X) → XΩ by setting

(Taf)(t) = ρa(f(t)), t ∈ Ω.

The function Tas is a simple function for each simple function s ∈ S(A, X), and
moreover it can be easily seen that Ta(L0(A, X)) ⊆ L0(A, X). The projection
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ρa is Lipschitz with constant 2 (cf. [4]), thus, since X is a Banach space, by
(1) for f, g ∈ L0(A, X) we have

(2) ‖Taf − Tag‖0 ≤ 2‖f − g‖0.

Lemma 2. Let K be a subset of L0(A, X). Then

(i) Ta(K) ⊆ L1(X),
(ii) the ‖ · ‖0-topology and the ‖ · ‖1-topology coincide on Ta(K).

Proof. (i) Since ‖Taf‖X ≤ aχΩ for f ∈ K, by [3, Theorem III.2.22] we have
Taf ∈ L1(X).

(ii) As Ta(K) ⊆ {f ∈ L1(X) : ‖f‖X ≤ aχΩ} the assert follows from [3,
Theorem III.3.6]. �

Next we introduce the operator Pπ which will be used for the proof of our
main result. Given a partition π = {A1, . . . , An} of Ω with η(Ai) > 0 for
i = 1, . . . , n we consider Pπ : L1(X) → S(A, X) the linear operator defined by
setting

Pπf =

n
∑

i=1

∫

Ai
f(t)µ(dt)

η(Ai)
χAi

.

Then for each f ∈ L1(X) we have

(3) ‖Pπf‖1 ≤ ‖f‖1.

Indeed if, for each i, we put si(f) =
∫

Ai
f(t)µ(dt)/η(Ai) applying Jensen’s

inequality, we have

‖si(f)‖X ≤

∫

Ai
‖f(t)‖X |µ|(dt)

η(Ai)
.

Consequently we get

‖Pπf‖1 =

∫

Ω

‖
n
∑

i=1

si(f)χAi
‖X |µ|(dt) =

n
∑

i=1

∫

Ai

‖si(f)‖X |µ|(dt)

=

n
∑

i=1

η(Ai)‖si(f)‖X ≤
n
∑

i=1

∫

Ai

‖f(t)‖X |µ|(dt)

=

∫

Ω

‖f(t)‖X |µ|(dt) = ‖f‖1.

2. Admissibility of L0(A, X)

We recall that for a bounded subset A of X the Hausdorff measure of non-
compactness γ(A) of A is the infimum of all ε > 0 such that A has an ε-
net in X ([5]). Moreover for each bounded subsets K of L0(A, X) we con-
sider the quantitative characteristic σ(K), introduced in [1], defined by setting
σ(K) = inf{ǫ > 0 : ∃M ⊆ X with γ(M) ≤ ǫ such that, ∀f ∈ K, there ex-
ists Df ⊆ Ω with η(Df ) ≤ ǫ and f(Ω \ Df ) ⊆ M}. In order to prove the
admissibility of L0(A, X) we need the following two lemmas.
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Lemma 3. Let K be a bounded subset of L0(A, X). If σ(K) = 0, then for all

ε > 0 there is a > 0 such that

‖f − Taf‖0 ≤ ε for each f ∈ K.

Proof. Let ε > 0 be given. Since σ(K) = 0 there is a subset M of X , with
γ(M) ≤ ε/2, such that for all f ∈ K there is Df ⊆ Ω with η(Df ) ≤ ε/2 and
f(Ω \ Df ) ⊆ M . Fix y1, . . . , ym ∈ X such that M ⊆ ∪m

j=1(yj + Bε/2(X)).
Then for each f ∈ K and t ∈ Ω \ Df there exists j ∈ {1, . . . ,m} such that
f(t) ∈ yj +Bε/2(X). Therefore

‖f(t)‖X ≤ ‖f(t)− yj‖X + ‖yj‖X ≤
ε

2
+ ‖yj‖X .

Set a = ε/2 + maxj ‖yj‖X . Then f(Ω \Df ) ⊆ Ba(X), which implies f = Taf
on Ω \Df . Since ‖Taf‖X ≤ ‖f‖X , by (1), we have ‖(Taf)χDf

‖0 ≤ ‖fχDf
‖0.

Moreover ‖fχDf
‖0 ≤ η(Df ), and thus we find

‖f − Taf‖0 = ‖(f − Taf)χDf
‖0 ≤ ‖fχDf

‖0 + ‖(Taf)χDf
‖0 ≤ 2‖fχDf

‖0 ≤ ε,

which gives the result. �

Lemma 4. Let π = {A1, . . . , An} be a finite partition of Ω. Then the subspace

S(π) =
{

s ∈ S(A, X) : s =
n
∑

i=1

xiχAi
, xi ∈ X

}

of L0(A, X) is admissible.

Proof. Let W be a compact subset of S(π) and ε > 0 be given. For each u ∈ W
we can write

u =
n
∑

i=1

xi(u)χAi

for suitable elements xi(u) of X . For any fixed i = 1, . . . , n, the set Ci =
{xi(u) : u ∈ W} is a compact subset of X , and consequently C = ∪n

i=1Ci is
also a compact subset of X .

Let δ = ε/l. Then by the admissibility of the Banach space X , there exist a
finite dimensional space Zε = span[z1, . . . , zm] in X and a continuous mapping
Hε : C → Zε such that

(4) ‖x−Hε(x)‖X ≤ δ for all x ∈ C.

Then for each i ∈ {1, . . . , n} and for suitable xi
j(u) ∈ X , with j = 1, . . . ,m, we

can write

Hε(xi(u)) =
m
∑

j=1

xi
j(u)zj .
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As no confusion can arise, we denote again by Hε the continuous mapping
Hε : W → S(π) defined by

Hεu =

n
∑

i=1

Hε(xi(u))χAi
=

n
∑

i=1

(

m
∑

j=1

xi
j(u)zj

)

χAi
.

Then Hε(W ) ⊆ span[χAi
zj ; i = 1, . . . , n; j = 1, . . . ,m] and

dim(span[Hε(W )]) < +∞.

On the other hand, for each u ∈ W we have

‖u−Hεu‖0 =
∥

∥

∥

n
∑

i=1

xi(u)χAi
−

n
∑

i=1

(

m
∑

j=1

xi
j(u)zj

)

χAi

∥

∥

∥

0
(5)

≤
n
∑

i=1

∥

∥

∥

(

xi(u)−
m
∑

j=1

xi
j(u)zj

)

χAi

∥

∥

∥

0
.

Next by (4) we have

∥

∥

∥

(

xi(u)−
m
∑

j=1

xi
j(u)zj

)

χAi

∥

∥

∥

X
≤ δχAi

,

hence for a fixed y ∈ X with ‖y‖X = 1 we find

∥

∥

∥

(

xi(u)−
m
∑

j=1

xi
j(u)zj

)

χAi

∥

∥

∥

X
≤ ‖δyχAi

‖X .

Consequently

∥

∥

∥

(

xi(u)−
m
∑

j=1

xi
j(u)zj

)

χAi

∥

∥

∥

0
≤ ‖δyχAi

‖0 = min{η(Ai), δ} ≤ δ.

From (5) we get ‖u−Hεu‖0 ≤ ε which completes the proof. �

Now we are in the position to prove our main result.

Theorem 1. The space L0(A, X) is admissible.

Proof. Fix K a compact set in L0(A, X), and ε > 0. Since K is compact, by
[1, Theorem 2.1 and Proposition 2.1] we have σ(K) = 0. Thus by Lemma 3
there is a > 0 such that

(6) ‖f − Taf‖0 ≤
ε

3
.

Next we show that there is a partition π of Ω such that

(7) ‖g − Pπg‖0 ≤
ε

3
for each g ∈ Ta(K).

Let δ > 0 be given. Since by (2) Ta is continuous with respect to ‖ · ‖0, we
have that Ta(K) is compact in (L1(X), ‖ · ‖0). Moreover by Lemma 2, the
‖ · ‖0-topology and the ‖ · ‖1-topology coincide on Ta(K). So Ta(K) is compact
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in (L1(X), ‖ · ‖1). Hence we can choose g1, . . . , gn in Ta(K) such that Ta(K) ⊆
⋃n

i=1

(

gi +Bδ/3(X)
)

. For each fixed i = 1, . . . , n let si, say si =
∑ki

j=1 xjχAj
,

be a simple function such that ‖gi − si‖1 ≤ δ/6. Set π(gi) = {A1, . . . , Aki
},

then Pπ(gi)si = si, therefore having in mind (3) we find

‖gi − Pπ(gi)gi‖1 ≤ ‖gi − si‖1 + ‖Pπ(gi)si − Pπ(gi)gi‖1 ≤
δ

3
.

Denote π the partition generated by all π(gi) (i = 1, . . . , n). Let g ∈ Ta(K),
then there exists i ∈ {1, . . . , n} such that g = gi + h and ‖h‖1 <

δ
3 . Therefore

‖g − Pπg‖1 ≤ ‖gi − Pπgi‖1 + ‖h− Pπh‖1 ≤
δ

3
+ 2‖h‖1 ≤ δ.

By Lemma 1, for δ = (ε/3)2 the assert (7) follows.
Assume π = {A1, . . . , Al}, then the set W = Pπ(Ta(K)) is a compact set

included in S(π) =
{

s ∈ S(A, X) : s =
∑l

i=1 xiχAi
, xi ∈ X

}

.

Hence by Lemma 4 there is Hε : W → L0(A, X) such that span[Hε(W )] is
finite dimensional and

(8) ‖u−Hεu‖0 ≤
ε

3
for each u ∈ W.

Then the continuous mappingH : K → L0(A, X) defined byH = Hε◦Pπ◦Ta

satisfies span[H(K)] < +∞. Moreover by (6), (7) and (8) we have

‖f −Hf‖0 ≤ ‖f − Taf‖0 + ‖Taf − PπTaf‖0 + ‖PπTaf −Hf‖0 ≤ ε

and the admissibility of L0(A, X) is proved. �
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