ON THE ADMISSIBILITY OF THE SPACE $L_{0}(\mathcal{A}, X)$ OF VECTOR-VALUED MEASURABLE FUNCTIONS

Diana Caponetti, Grzegorz Lewicki, Alessandro Trombetta, and Giulio Trombetta

Abstract

We prove the admissibility of the space $L_{0}(\mathcal{A}, X)$ of vectorvalued measurable functions determined by real-valued finitely additive set functions defined on algebras of sets.

The notion of admissibility introduced by Klee [7] guarantees that a compact mapping into an admissible Hausdorff topological vector space E can be approximated by compact finite dimensional mappings. This notion is very important in degree theory and fixed point theory. It is known that locally convex spaces are admissible (see [10]). There are some classes of nonlocally convex spaces which are admissible. Riedrich in [13] proved the admissibility of the space $S(0,1)$ of measurable functions and in [12] the admissibility of the space $L_{p}(0,1)$ for $0<p<1$. The admissibility of other function spaces has been proved by Mach [6] and Ishii [8]. In [14] it is proved the admissibility of spaces of Besov-Triebel-Lizorkin type.

Definition 1 ([7]). Let E be a Haudorff topological vector space. A subset Z of E is said to be admissible if for every compact subset K of Z and for every neighborhood V of zero in E there exists a continuous mapping $H: K \rightarrow Z$ such that $\operatorname{dim}(\operatorname{span}[H(K)])<+\infty$ and $x-H x \in V$ for every $x \in K$. If $Z=E$ we say that the space E is admissible.

In this paper we deal with spaces of vector-valued measurable functions and, as a major fact, instead of σ-additive measures we consider finitely additive set functions defined on algebras of sets.

Let X be a Banach space, Ω a nonempty set, \mathcal{A} a subalgebra of the power set $\mathcal{P}(\Omega)$ of Ω and $\mu: \mathcal{A} \rightarrow \mathbb{R}$ a finitely additive set function. We prove

[^0]the admissibility of the space $L_{0}(\mathcal{A}, X)$ of all X-valued μ-measurable functions defined on Ω (see [3, Chp III]).

It is important to notice that in [2] Cauty provides an example of a metric linear space in which the admissibility fails. Moreover, it is known that in general $L_{0}(\mathcal{A}, X)$ is not homeomorphic to the classical space $L_{0}([0,1], X)$ of all Lebesgue measurable functions from $[0,1]$ to X endowed with the topology generated by the convergence in measure, and to our knowledge the question if all the spaces $L_{0}(\mathcal{A}, X)$ are homeomorphic or not to an Hilbert space is open. Some results in this latter direction have appeared in [11, Theorem 4.9] in the case where μ is a finite nonatomic measure.

1. Preliminaries and notations

Let $\left(X,\|\cdot\|_{X}\right)$ be a real or complex Banach space, Ω a nonempty set, \mathcal{A} a subalgebra of the power set $\mathcal{P}(\Omega)$ of Ω and $\mu: \mathcal{A} \rightarrow \mathbb{R}$ a finitely additive set function. Then for every $A \in \mathcal{A}$ the total variation $|\mu|(A)$ of μ on A is defined by $|\mu|(A)=\sup \sum_{i=1}^{n}\left|\mu\left(A_{i}\right)\right|$ where the supremum is taken over all finite sequences $\left(A_{i}\right)$ of disjoint sets in \mathcal{A} with $A_{i} \subseteq A$. Then $|\mu|$ induces the submeasure $\eta: \mathcal{P}(\Omega) \rightarrow[0,+\infty[$ defined by $\eta(E)=\inf \{|\mu|(A): A \in \mathcal{A}$ and $E \subseteq A\}$ for $E \subseteq \Omega$. We denote by

$$
S(\mathcal{A}, X)=\left\{\sum_{i=1}^{n} x_{i} \chi_{A_{i}}: n \in \mathbb{N}, x_{i} \in X, A_{i} \in \mathcal{A}\right\}
$$

the space of all X-valued simple functions on Ω; where χ_{A} denotes the characteristic function of the set A defined on Ω. Let X^{Ω} denote the set of all functions f from Ω to X. For a function $f \in X^{\Omega}$ we set

$$
\|f\|_{0}=\inf \left\{\alpha \geq 0: \eta\left(\left\{\|f\|_{X} \geq \alpha\right\}\right) \leq \alpha\right\}
$$

where $\|f\|_{X}$ denotes the function $t \rightarrow\|f(t)\|_{X}$ and $\left\{\|f\|_{X} \geq \alpha\right\}=\{t \in \Omega$: $\left.\|f(t)\|_{X} \geq \alpha\right\}$, with the convention $\inf \emptyset=+\infty$. Then $\|\cdot\|_{0}$ has the following properties:

$$
\begin{align*}
& \|0\|_{0}=0 \\
& \|f+g\|_{0} \leq\|f\|_{0}+\|g\|_{0}, \\
& \|f\|_{X} \leq\|g\|_{X} \text { implies }\|f\|_{0} \leq\|g\|_{0} \text { for } f, g \in X^{\Omega}, \tag{1}\\
& \left\|y \chi_{A}\right\|_{0}=\min \left\{\eta(A),\|y\|_{X}\right\} \text { for } A \subseteq \Omega, y \in X \text { and } f \in X^{\Omega} .
\end{align*}
$$

A function $f \in X^{\Omega}$ is said to be a μ-null function if $\eta\left(\left\{\|f\|_{X} \geq a\right\}\right)=0$ for any $a>0$. Then by $L_{0}(\mathcal{A}, X)$ we denote the F-normed space (in the sense of [9]) given by the closure of the space $S(\mathcal{A}, X)$ in $\left(X^{\Omega},\|\cdot\|_{0}\right)$, where it is understood that we identify functions differing by a μ-null function.

We briefly recall the definitions of integrable function and integral for an integrable function, with respect to μ, of a function f of $L_{0}(\mathcal{A}, X)$ as introduced
in [3]. Let $s=\sum_{i=1}^{n} x_{i} \chi_{A_{i}}$ be a simple function in $S(\mathcal{A}, X)$ and $A \in \mathcal{A}$, then the integral over A of f is defined by

$$
\int_{A} f(t) \mu(d t)=\sum_{i=1}^{n} x_{i} \mu\left(A_{i}\right)
$$

Let $L_{1}(X)$ denote the Lebesgue space of all functions $f \in L_{0}(\mathcal{A}, X)$ for which there is a sequence $\left(s_{n}\right)$ in $S(\mathcal{A}, X)$ converging to f with respect to $\|\cdot\|_{0}$ such that

$$
\lim _{m, n} \int_{\Omega}\left\|s_{m}(t)-s_{n}(t)\right\|_{X}|\mu|(d t)=0
$$

The sequence $\left(s_{n}\right)$ is said to be a determining sequence for f and the integral over A of f is defined by

$$
\int_{A} f(t) \mu(d t)=\lim _{n \rightarrow \infty} \int_{A} s_{n}(t) \mu(d t), \quad A \in \mathcal{A} .
$$

For each $f \in L_{1}(X),\|f\|_{1}=\int_{\Omega}\|f(t)\|_{X}|\mu|(d t)$ and we also have

$$
\|f\|_{1}=\lim _{n \rightarrow \infty} \int_{\Omega}\left\|s_{n}(t)\right\|_{X}|\mu|(d t)
$$

Obviously $\eta(A)=|\mu|(A)=\left\|\chi_{A}\right\|_{1}$ for $A \in \mathcal{A}$. In the sequel we will use the property given in the following lemma.

Lemma 1. Let $f \in L_{1}(X)$. Then $\|f\|_{0} \leq\|f\|_{1}^{1 / 2}$.
Proof. Let $s \in S(\mathcal{A}, X) \backslash\{0\}$. Assume on the contrary that $\|s\|_{0}>\|s\|_{1}^{1 / 2}$. Take $\alpha=\|s\|_{1}^{1 / 2}$, then

$$
\begin{aligned}
\|s\|_{1} & =\int_{\Omega}\|s(t)\|_{X}|\mu|(d t) \geq \int_{\left\{\|s\|_{X} \geq \alpha\right\}}\|s(t)\|_{X}|\mu|(d t) \geq \alpha \eta\left(\left\{\|s\|_{X} \geq \alpha\right\}\right) \\
& >\|s\|_{1}
\end{aligned}
$$

which is a contradiction.
Next let $f \in L_{1}(X)$ and $\left(s_{n}\right)$ a sequence in $S(\mathcal{A}, X)$ determining f. Then we have both $\lim _{n \rightarrow \infty}\left\|s_{n}\right\|_{0}=\|f\|_{0}$ and $\lim _{n \rightarrow \infty}\left\|s_{n}\right\|_{1}=\|f\|_{1}$, which imply the assert.

Let $B_{a}(X)$ denote the closed ball of radius $a>0$. We denote by ρ_{a} the radial projection of X onto $B_{a}(X)$ defined by

$$
\rho_{a}(x)=\left\{\begin{array}{lll}
x & \text { if } & \|x\|_{X} \leq a \\
a \frac{x}{\|x\|_{X}} & \text { if } & \|x\|_{X}>a
\end{array}\right.
$$

Then we define the mapping $T_{a}: L_{0}(\mathcal{A}, X) \rightarrow X^{\Omega}$ by setting

$$
\left(T_{a} f\right)(t)=\rho_{a}(f(t)), \quad t \in \Omega
$$

The function $T_{a} s$ is a simple function for each simple function $s \in S(\mathcal{A}, X)$, and moreover it can be easily seen that $T_{a}\left(L_{0}(\mathcal{A}, X)\right) \subseteq L_{0}(\mathcal{A}, X)$. The projection
ρ_{a} is Lipschitz with constant 2 (cf. [4]), thus, since X is a Banach space, by (1) for $f, g \in L_{0}(\mathcal{A}, X)$ we have

$$
\begin{equation*}
\left\|T_{a} f-T_{a} g\right\|_{0} \leq 2\|f-g\|_{0} \tag{2}
\end{equation*}
$$

Lemma 2. Let K be a subset of $L_{0}(\mathcal{A}, X)$. Then
(i) $T_{a}(K) \subseteq L_{1}(X)$,
(ii) the $\|\cdot\|_{0}$-topology and the $\|\cdot\|_{1}$-topology coincide on $T_{a}(K)$.

Proof. (i) Since $\left\|T_{a} f\right\|_{X} \leq a \chi_{\Omega}$ for $f \in K$, by [3, Theorem III.2.22] we have $T_{a} f \in L_{1}(X)$.
(ii) As $T_{a}(K) \subseteq\left\{f \in L_{1}(X):\|f\|_{X} \leq a \chi_{\Omega}\right\}$ the assert follows from [3, Theorem III.3.6].

Next we introduce the operator P_{π} which will be used for the proof of our main result. Given a partition $\pi=\left\{A_{1}, \ldots, A_{n}\right\}$ of Ω with $\eta\left(A_{i}\right)>0$ for $i=1, \ldots, n$ we consider $P_{\pi}: L_{1}(X) \rightarrow S(\mathcal{A}, X)$ the linear operator defined by setting

$$
P_{\pi} f=\sum_{i=1}^{n} \frac{\int_{A_{i}} f(t) \mu(d t)}{\eta\left(A_{i}\right)} \chi_{A_{i}} .
$$

Then for each $f \in L_{1}(X)$ we have

$$
\begin{equation*}
\left\|P_{\pi} f\right\|_{1} \leq\|f\|_{1} \tag{3}
\end{equation*}
$$

Indeed if, for each i, we put $s_{i}(f)=\int_{A_{i}} f(t) \mu(d t) / \eta\left(A_{i}\right)$ applying Jensen's inequality, we have

$$
\left\|s_{i}(f)\right\|_{X} \leq \frac{\int_{A_{i}}\|f(t)\|_{X}|\mu|(d t)}{\eta\left(A_{i}\right)}
$$

Consequently we get

$$
\begin{aligned}
\left\|P_{\pi} f\right\|_{1} & =\int_{\Omega}\left\|\sum_{i=1}^{n} s_{i}(f) \chi_{A_{i}}\right\|_{X}|\mu|(d t)=\sum_{i=1}^{n} \int_{A_{i}}\left\|s_{i}(f)\right\|_{X}|\mu|(d t) \\
& =\sum_{i=1}^{n} \eta\left(A_{i}\right)\left\|s_{i}(f)\right\|_{X} \leq \sum_{i=1}^{n} \int_{A_{i}}\|f(t)\|_{X}|\mu|(d t) \\
& =\int_{\Omega}\|f(t)\|_{X}|\mu|(d t)=\|f\|_{1}
\end{aligned}
$$

2. Admissibility of $L_{0}(\mathcal{A}, X)$

We recall that for a bounded subset A of X the Hausdorff measure of noncompactness $\gamma(A)$ of A is the infimum of all $\varepsilon>0$ such that A has an ε net in X ([5]). Moreover for each bounded subsets K of $L_{0}(\mathcal{A}, X)$ we consider the quantitative characteristic $\sigma(K)$, introduced in [1], defined by setting $\sigma(K)=\inf \{\epsilon>0: \exists M \subseteq X$ with $\gamma(M) \leq \epsilon$ such that, $\forall f \in K$, there exists $D_{f} \subseteq \Omega$ with $\eta\left(D_{f}\right) \leq \epsilon$ and $\left.f\left(\Omega \backslash D_{f}\right) \subseteq M\right\}$. In order to prove the admissibility of $L_{0}(\mathcal{A}, X)$ we need the following two lemmas.

Lemma 3. Let K be a bounded subset of $L_{0}(\mathcal{A}, X)$. If $\sigma(K)=0$, then for all $\varepsilon>0$ there is $a>0$ such that

$$
\left\|f-T_{a} f\right\|_{0} \leq \varepsilon \quad \text { for each } \quad f \in K
$$

Proof. Let $\varepsilon>0$ be given. Since $\sigma(K)=0$ there is a subset M of X, with $\gamma(M) \leq \varepsilon / 2$, such that for all $f \in K$ there is $D_{f} \subseteq \Omega$ with $\eta\left(D_{f}\right) \leq \varepsilon / 2$ and $f\left(\Omega \backslash D_{f}\right) \subseteq M$. Fix $y_{1}, \ldots, y_{m} \in X$ such that $M \subseteq \cup_{j=1}^{m}\left(y_{j}+B_{\varepsilon / 2}(X)\right)$. Then for each $f \in K$ and $t \in \Omega \backslash D_{f}$ there exists $j \in\{1, \ldots, m\}$ such that $f(t) \in y_{j}+B_{\varepsilon / 2}(X)$. Therefore

$$
\|f(t)\|_{X} \leq\left\|f(t)-y_{j}\right\|_{X}+\left\|y_{j}\right\|_{X} \leq \frac{\varepsilon}{2}+\left\|y_{j}\right\|_{X}
$$

Set $a=\varepsilon / 2+\max _{j}\left\|y_{j}\right\|_{X}$. Then $f\left(\Omega \backslash D_{f}\right) \subseteq B_{a}(X)$, which implies $f=T_{a} f$ on $\Omega \backslash D_{f}$. Since $\left\|T_{a} f\right\|_{X} \leq\|f\|_{X}$, by (1), we have $\left\|\left(T_{a} f\right) \chi_{D_{f}}\right\|_{0} \leq\left\|f \chi_{D_{f}}\right\|_{0}$. Moreover $\left\|f \chi_{D_{f}}\right\|_{0} \leq \eta\left(D_{f}\right)$, and thus we find

$$
\left\|f-T_{a} f\right\|_{0}=\left\|\left(f-T_{a} f\right) \chi_{D_{f}}\right\|_{0} \leq\left\|f \chi_{D_{f}}\right\|_{0}+\left\|\left(T_{a} f\right) \chi_{D_{f}}\right\|_{0} \leq 2\left\|f \chi_{D_{f}}\right\|_{0} \leq \varepsilon
$$

which gives the result.
Lemma 4. Let $\pi=\left\{A_{1}, \ldots, A_{n}\right\}$ be a finite partition of Ω. Then the subspace

$$
S(\pi)=\left\{s \in S(\mathcal{A}, X): s=\sum_{i=1}^{n} x_{i} \chi_{A_{i}}, \quad x_{i} \in X\right\}
$$

of $L_{0}(\mathcal{A}, X)$ is admissible.
Proof. Let W be a compact subset of $S(\pi)$ and $\varepsilon>0$ be given. For each $u \in W$ we can write

$$
u=\sum_{i=1}^{n} x_{i}(u) \chi_{A_{i}}
$$

for suitable elements $x_{i}(u)$ of X. For any fixed $i=1, \ldots, n$, the set $C_{i}=$ $\left\{x_{i}(u): u \in W\right\}$ is a compact subset of X, and consequently $C=\cup_{i=1}^{n} C_{i}$ is also a compact subset of X.

Let $\delta=\varepsilon / l$. Then by the admissibility of the Banach space X, there exist a finite dimensional space $Z_{\varepsilon}=\operatorname{span}\left[z_{1}, \ldots, z_{m}\right]$ in X and a continuous mapping $H_{\varepsilon}: C \rightarrow Z_{\varepsilon}$ such that

$$
\begin{equation*}
\left\|x-H_{\varepsilon}(x)\right\|_{X} \leq \delta \text { for all } x \in C \tag{4}
\end{equation*}
$$

Then for each $i \in\{1, \ldots, n\}$ and for suitable $x_{j}^{i}(u) \in X$, with $j=1, \ldots, m$, we can write

$$
H_{\varepsilon}\left(x_{i}(u)\right)=\sum_{j=1}^{m} x_{j}^{i}(u) z_{j}
$$

As no confusion can arise, we denote again by H_{ε} the continuous mapping $H_{\varepsilon}: W \rightarrow S(\pi)$ defined by

$$
H_{\varepsilon} u=\sum_{i=1}^{n} H_{\varepsilon}\left(x_{i}(u)\right) \chi_{A_{i}}=\sum_{i=1}^{n}\left(\sum_{j=1}^{m} x_{j}^{i}(u) z_{j}\right) \chi_{A_{i}} .
$$

Then $H_{\varepsilon}(W) \subseteq \operatorname{span}\left[\chi_{A_{i}} z_{j} ; i=1, \ldots, n ; j=1, \ldots, m\right]$ and

$$
\operatorname{dim}\left(\operatorname{span}\left[H_{\varepsilon}(W)\right]\right)<+\infty
$$

On the other hand, for each $u \in W$ we have

$$
\begin{align*}
\left\|u-H_{\varepsilon} u\right\|_{0} & =\left\|\sum_{i=1}^{n} x_{i}(u) \chi_{A_{i}}-\sum_{i=1}^{n}\left(\sum_{j=1}^{m} x_{j}^{i}(u) z_{j}\right) \chi_{A_{i}}\right\|_{0} \tag{5}\\
& \leq \sum_{i=1}^{n}\left\|\left(x_{i}(u)-\sum_{j=1}^{m} x_{j}^{i}(u) z_{j}\right) \chi_{A_{i}}\right\|_{0} .
\end{align*}
$$

Next by (4) we have

$$
\left\|\left(x_{i}(u)-\sum_{j=1}^{m} x_{j}^{i}(u) z_{j}\right) \chi_{A_{i}}\right\|_{X} \leq \delta \chi_{A_{i}},
$$

hence for a fixed $y \in X$ with $\|y\|_{X}=1$ we find

$$
\left\|\left(x_{i}(u)-\sum_{j=1}^{m} x_{j}^{i}(u) z_{j}\right) \chi_{A_{i}}\right\|_{X} \leq\left\|\delta y \chi_{A_{i}}\right\|_{X}
$$

Consequently

$$
\left\|\left(x_{i}(u)-\sum_{j=1}^{m} x_{j}^{i}(u) z_{j}\right) \chi_{A_{i}}\right\|_{0} \leq\left\|\delta y \chi_{A_{i}}\right\|_{0}=\min \left\{\eta\left(A_{i}\right), \delta\right\} \leq \delta .
$$

From (5) we get $\left\|u-H_{\varepsilon} u\right\|_{0} \leq \varepsilon$ which completes the proof.
Now we are in the position to prove our main result.
Theorem 1. The space $L_{0}(\mathcal{A}, X)$ is admissible.
Proof. Fix K a compact set in $L_{0}(\mathcal{A}, X)$, and $\varepsilon>0$. Since K is compact, by [1, Theorem 2.1 and Proposition 2.1] we have $\sigma(K)=0$. Thus by Lemma 3 there is $a>0$ such that

$$
\begin{equation*}
\left\|f-T_{a} f\right\|_{0} \leq \frac{\varepsilon}{3} \tag{6}
\end{equation*}
$$

Next we show that there is a partition π of Ω such that

$$
\begin{equation*}
\left\|g-P_{\pi} g\right\|_{0} \leq \frac{\varepsilon}{3} \quad \text { for each } g \in T_{a}(K) \tag{7}
\end{equation*}
$$

Let $\delta>0$ be given. Since by (2) T_{a} is continuous with respect to $\|\cdot\|_{0}$, we have that $T_{a}(K)$ is compact in $\left(L_{1}(X),\|\cdot\|_{0}\right)$. Moreover by Lemma 2, the $\|\cdot\|_{0}$-topology and the $\|\cdot\|_{1}$-topology coincide on $T_{a}(K)$. So $T_{a}(K)$ is compact
in $\left(L_{1}(X),\|\cdot\|_{1}\right)$. Hence we can choose g_{1}, \ldots, g_{n} in $T_{a}(K)$ such that $T_{a}(K) \subseteq$ $\bigcup_{i=1}^{n}\left(g_{i}+B_{\delta / 3}(X)\right)$. For each fixed $i=1, \ldots, n$ let s_{i}, say $s_{i}=\sum_{j=1}^{k_{i}} x_{j} \chi_{A_{j}}$, be a simple function such that $\left\|g_{i}-s_{i}\right\|_{1} \leq \delta / 6$. Set $\pi\left(g_{i}\right)=\left\{A_{1}, \ldots, A_{k_{i}}\right\}$, then $P_{\pi\left(g_{i}\right)} s_{i}=s_{i}$, therefore having in mind (3) we find

$$
\left\|g_{i}-P_{\pi\left(g_{i}\right)} g_{i}\right\|_{1} \leq\left\|g_{i}-s_{i}\right\|_{1}+\left\|P_{\pi\left(g_{i}\right)} s_{i}-P_{\pi\left(g_{i}\right)} g_{i}\right\|_{1} \leq \frac{\delta}{3}
$$

Denote π the partition generated by all $\pi\left(g_{i}\right)(i=1, \ldots, n)$. Let $g \in T_{a}(K)$, then there exists $i \in\{1, \ldots, n\}$ such that $g=g_{i}+h$ and $\|h\|_{1}<\frac{\delta}{3}$. Therefore

$$
\left\|g-P_{\pi} g\right\|_{1} \leq\left\|g_{i}-P_{\pi} g_{i}\right\|_{1}+\left\|h-P_{\pi} h\right\|_{1} \leq \frac{\delta}{3}+2\|h\|_{1} \leq \delta
$$

By Lemma 1, for $\delta=(\varepsilon / 3)^{2}$ the assert (7) follows.
Assume $\pi=\left\{A_{1}, \ldots, A_{l}\right\}$, then the set $W=P_{\pi}\left(T_{a}(K)\right)$ is a compact set included in $S(\pi)=\left\{s \in S(\mathcal{A}, X): s=\sum_{i=1}^{l} x_{i} \chi_{A_{i}}, \quad x_{i} \in X\right\}$.

Hence by Lemma 4 there is $H_{\varepsilon}: W \rightarrow L_{0}(\mathcal{A}, X)$ such that $\operatorname{span}\left[H_{\varepsilon}(W)\right]$ is finite dimensional and

$$
\begin{equation*}
\left\|u-H_{\varepsilon} u\right\|_{0} \leq \frac{\varepsilon}{3} \text { for each } u \in W \tag{8}
\end{equation*}
$$

Then the continuous mapping $H: K \rightarrow L_{0}(\mathcal{A}, X)$ defined by $H=H_{\varepsilon} \circ P_{\pi} \circ T_{a}$ satisfies $\operatorname{span}[H(K)]<+\infty$. Moreover by (6), (7) and (8) we have

$$
\|f-H f\|_{0} \leq\left\|f-T_{a} f\right\|_{0}+\left\|T_{a} f-P_{\pi} T_{a} f\right\|_{0}+\left\|P_{\pi} T_{a} f-H f\right\|_{0} \leq \varepsilon
$$

and the admissibility of $L_{0}(\mathcal{A}, X)$ is proved.

References

[1] A. Avallone and G. Trombetta, Measures of noncompactness in the space L_{0} and a generalization of the Arzelà-Ascoli theorem, Boll. Unione Mat. Ital (7) 5 (1991), no. 3, 573-587.
[2] R. Cauty, Un espace métrique linéaire qui n'est pas un rétracte absolu, Fund. Math. 146 (1994), 85-99.
[3] N. Dunford and J. T. Schwartz, Linear Operators I. General Theory, Wiley-Interscience Pub., Inc., New York, 1964.
[4] C. F. Dunkl and K. S. Williams, A simple norm inequality, Amer. Math. Monthly 71 (1964), no. 1, 53-54.
[5] L. S. Goldenstein, I. C. Gohberg, and A. S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Uchen. Zap. Kishinevsk. Univ. 29 (1957), 29-36.
[6] J. Mach, Die Zulässigkeit und gewisse Eigenshaften der Funktionenräume $L_{\phi, k}$ und L_{ϕ}, Ber. Ges. f. Math. u. Datenverarb. Bonn 61 (1972), 38 pp.
[7] V. Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286296.
[8] J. Ishii, On the admissibility of function spaces, J. Fac. Sci. Hokkaido Univ. Series I 19 (1965), 49-55.
[9] H. Jarchow, Locally Convex Spaces, Mathematical Textbooks, B. G. Teubner, Stuttgart, 1981.
[10] M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497-511.
[11] P. Niemiec, Spaces of measurable functions, to appear in Cent. Eur. J. Math. 11 (2013), 1304-1316.
[12] T. Riedrich, Die Räume $L^{p}(0,1)(0<p<1)$ sind zulässig, Wiss. Z. Techn. Univ. Dresden 12 (1963), 1149-1152.
[13] , Der Räum $S(0,1)$ ist zulässig, Wiss. Z. Techn. Univ. Dresden 13 (1964), 1-6.
[14] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Ser. Nonlinear Anal. Applications, 3, Berlin, 1996.

Diana Caponetti

Dipartimento di Matematica e Informatica
Università di Palermo
90123 Palermo, Italy
E-mail address: diana.caponetti@math.unipa.it
Grzegorz Lewicki
Department of Mathematics and Computer Science
Jagiellonian University
30-348 Krakow, Lojasiewicza 4, Poland
E-mail address: Grzegorz.Lewicki@im.uj.edu.pl
Alessandro Trombetta
Dipartimento di Matematica
Università della Calabria
87036 Arcavacata di Rende, Cosenza, Italy
E-mail address: aletromb@unical.it
Giulio Trombetta
Dipartimento di Matematica
Università della Calabria
87036 Arcavacata di Rende, Cosenza, Italy
E-mail address: trombetta@unical.it

[^0]: Received June 20, 2012; Revised March 19, 2013.
 2010 Mathematics Subject Classification. 46E30, 46E40.
 Key words and phrases. admissible space, finitely additive set function, measurable function.

 This paper has been partly written while the second author visited the Dipartimento di Matematica e Informatica, Università di Palermo, as a visiting professor supported by GNAMPA-INDAM.

