
Bull. Korean Math. Soc. 50 (2013), No. 6, pp. 1847–1854
http://dx.doi.org/10.4134/BKMS.2013.50.6.1847

GLOBAL ASYMPTOTIC STABILITY OF POSITIVE STEADY

STATES OF AN n-DIMENSIONAL RATIO-DEPENDENT

PREDATOR-PREY SYSTEM WITH DIFFUSION

Jun Zhou

Abstract. The main concern of this paper is to study the dynamics of
an n-dimensional ratio-dependent predator-prey system with diffusion.
We study the dissipativeness, persistence of the system and it is shown
that the unique positive constant steady state is globally asymptotically
stable under some assumptions.

1. Introduction

There is a growing biological and physiological evidence [1, 3, 4, 7] that
in some situations, especially when the predator has to search for food and
therefore has to share or compete for food, a more suitable general predator-
prey theory should be based on the so-called ratio-dependent theory, which can
be roughly stated as the per capita predator growth rate being a function of
ratio of prey to predator abundance. Denote by N(t) and P (t) the population
densities of prey and predator at time t, respectively. Then the ratio-dependent
type predator-prey model with Michaelis-Menten type functional response is
given as follows (after nondimensionalization) [2]:















dN

dt
= N(1− kN)−

αNP

N + αP
, t > 0,

dP

dt
= −aP +

αNP

N + αP
, t > 0,

where k, α, and a are positive constants.
Consider the following n-dimensional ratio-dependent ecological system, in

which n different predator species (the i-th predator density at time t is denoted
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by Pi(t), i = 1, 2, . . . , n, respectively) are competing with a single prey species
(the density of prey at time t is denoted by N(t)):















dN

dt
= N(1− kN)−

N(
∑n

i=1 αiPi)

N +
∑n

i=1 αiPi

, t > 0,

dPi

dt
= −aiPi +

αiNPi

N + αiPi

, t > 0, i = 1, 2, . . . , n,

where k, αi, ai (i = 1, 2, . . . , n) are positive constants.
Predators and preys are usually abundant in space with different densities

at different positions and they are diffusive. Several papers have focused on
the effect of diffusion which plays a crucial role in permanence and stability of
population (see [5, 6, 9, 10, 14, 15, 16, 19, 20, 21] and the references therein).

Based on the above reasons, in this paper, we consider an n-dimensional
ratio-dependent predator-prey system with diffusion as follows:

(1.1)























∂U

∂t
(x, t) −D∆U(x, t) = F (U(x, t)) in Ω× (0,∞),

∂U

∂ν
= (0, . . . , 0) on ∂Ω× (0,∞),

U(x, 0) = ϕ(x) = (ϕ0(x), . . . , ϕn(x)) in Ω̄,

where F = (f0, f1, . . . , fn), U = (u, v1, . . . , vn), D = diag[d0, d1, . . . , dn] and

f0 = u(1− ku)−
u(
∑n

i=1 αivi)

u+
∑n

i=1 αivi
= u2

(

1

u+
∑n

i=1 αivi
− k

)

,(1.2)

fi = −aivi +
αiviu

αivi + u
, i = 1, . . . , n,(1.3)

and Ω is a bounded domain in R
N , N ≥ 1, with smooth boundary ∂Ω, ∂

∂ν
is the

outward directional normal derivative to ∂Ω, the parameters k, d0, di, αi, ai (i =
1, . . . , n) are positive constants, and ϕi(x) (i = 0, 1, . . . , n) are continuous non-
negative and nontrivial functions. Furthermore, we assume the parameters
satisfy

(H1)
∑n

i=1
αi

ai

> n− 1 and ai < αi (i = 1, . . . , n).

(H2)
∑n

i=1
αi

ai

< 1 + n and ai < αi (i = 1, . . . , n).

It is easy to see that problem (1.1) has a unique positive constant steady

state Ũ = (ũ, ṽ1, . . . , ṽn) if and only if (H1) holds and

ũ =
1

k
(

1− n+
∑n

i=1
αi

ai

) , ṽi =
(αi − ai)

aiαi

ũ, i = 1, . . . , n.(1.4)

In recent years, the study of the dynamics of predator-prey system attracts
a lot of authors’ interests (see [8, 11, 12, 13, 17] and reference therein). The
main goal of this paper is to study dissipativeness, persistence of the system
(1.1) and globally asymptotical stability of the positive constant steady-state

Ũ . Our main results are:
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(1) The system (1.1) is dissipative and persistent if (H2) holds.

(2) The constant steady-state Ũ is globally asymptotically stable if (H1)
and (H2) hold.

The organization of this paper is as follows. In Section 2, we study dissipa-
tiveness and persistence and in Section 3, we study the globally asymptotical
stability of Ũ .

2. Dissipativeness and persistence of system (1.1)

The main concern of this section is dissipativeness and persistence of system
(1.1) and the main result is as follows.

Theorem 2.1. Assume (H2) holds and let (u, v1, . . . , vn) be a solution of prob-

lem (1.1). Then

(2.1)

1

k

(

1 + n−

n
∑

i=1

αi

ai

)

≤ lim inf
t→+∞

min
Ω̄
u(·, t) ≤ u(x, t)

≤ lim sup
t→+∞

max
Ω̄

u(·, t) ≤
1

k
,

(2.2)

(αi−ai)

kaiαi

(

1 + n−

n
∑

i=1

αi

ai

)

≤ lim inf
t→+∞

min
Ω̄
vi(·, t) ≤ vi(x, t)

≤ lim sup
t→+∞

max
Ω̄

vi(·, t) ≤
(αi−ai)

kaiαi

,

where i = 1, . . . , n.

In order to prove the above results, we first introduce the following lemma
[17, 18].

Lemma 2.2. Assume f(s) ∈ C1([0,+∞)), d > 0, β ≥ 0, T ∈ [0,+∞) are

constants, and w ∈ C2,1(Ω × (T,+∞)) ∩ C1,0(Ω̄ × [T,+∞)) is positive. Then

we have

(1) If w satisfies











∂w

∂t
− d∆w ≤ (≥)w1+βf(w)(α − w) in Ω× (T,+∞),

∂w

∂ν
= 0 on ∂Ω× (T,+∞),

where α > 0 is a constant, we have

lim sup
t→+∞

max
Ω̄

w(·, t) ≤ α (lim inf
t→+∞

min
Ω̄
w(·, t) ≥ α).
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(2) If w satisfies











∂w

∂t
− d∆w ≤ w1+βf(w)(α − w) in Ω× (T,+∞),

∂w

∂ν
= 0 on ∂Ω× (T,+∞),

where α ≤ 0 is a constant, we have

lim sup
t→+∞

max
Ω̄

w(·, t) ≤ 0.

Now, we can prove Theorem 2.1.

Proof of Theorem 2.1. Throughout the proof, (1.1)u means the equation sat-
isfying by u in (1.1) and (1.1)vi means the equation satisfying by vi in (1.1).
By (1.1)u, we obtain ut − d0∆u ≤ u(1 − ku). So, by virtue of Lemma 2.2, we
obtain

lim sup
t→+∞

max
Ω̄

u(·, t) ≤
1

k
:= ū(1).(2.3)

So, for any ǫ > 0, there exists T ǫ
1 ≫ 1 such that u(x, t) ≤ ū(1)+ ǫ for any x ∈ Ω̄

and t ≥ T ǫ
1 . By (1.1)vi and for any (x, t) ∈ Ω× (T ǫ

1 ,+∞), we obtain

vit − di∆vi ≤ −aivi +
αivi(ū

(1) + ǫ)

αivi + (ū(1) + ǫ)
= vi

[

(αi − ai)(ū
(1) + ǫ)− aiαivi

αivi + (ū(1) + ǫ)

]

.

By Lemma 2.2, we have lim supt→+∞
maxΩ̄ vi(·, t) ≤ (αi−ai)(ū

(1)+ǫ)
aiαi

. By the
arbitrariness of ǫ > 0, we obtain

lim sup
t→+∞

max
Ω̄

vi(·, t) ≤
(αi − ai)ū

(1)

aiαi

:= v̄
(1)
i .(2.4)

Direct computation implies

n+ 1 >

n
∑

i=1

αi

ai
⇒

1

k
>

n
∑

i=1

αiv̄
(1)
i .(2.5)

So, (H2) and (2.5) implies there exists ǫ0 > 0 such that for ǫ ∈ (0, ǫ0], 1/k >
∑n

i=1 αi(v̄
(1)
i + ǫ) and there exists T ǫ

2 ≫ 1 such that for any (x, t) ∈ Ω̄ ×

[T ǫ
2 ,+∞), vi(x, t) ≤ v̄

(1)
i + ǫ. Then by (1.1)u and for any (x, t) ∈ Ω× (T ǫ

2 ,+∞),
we obtain

ut − d0∆u ≥ u2

(

1

u+
∑n

i=1 αi(v̄
(1)
i + ǫ)

− k

)

= u2

[

1− k
∑n

i=1 αi(v̄
(1)
i + ǫ)− ku

u+
∑n

i=1 αi(v̄
(1)
i + ǫ)

]

.
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By Lemma 2.2, we obtain lim inft→+∞ minΩ̄ u(·, t) ≥
1
k
−
∑n

i=1 αi(v̄
(1)
i + ǫ). By

the arbitrariness of ǫ ∈ (0, ǫ0], we obtain

lim inf
t→+∞

min
Ω̄
u(·, t) ≥

1

k
−

n
∑

i=1

αiv̄
(1)
i := u(1) > 0.(2.6)

So for any ǫ ∈ (0, u(1)), there exists T ǫ
3 >> 1 such that for any (x, t) ∈ Ω̄ ×

[T ǫ
3 ,+∞), u(x, t) ≥ u(1)− ǫ. Then by (1.1)vi and for any (x, t) ∈ Ω× (T ǫ

3 ,+∞),
we obtain

vit − di∆vi ≥ −aivi +
αivi(u

(1) − ǫ)

αivi + (u(1) − ǫ)
= vi

[

(αi − ai)(u
(1) − ǫ)− aiαivi

αivi + (u(1) − ǫ)

]

.

By Lemma 2.2, we have lim inf t→+∞ vi(·, t) ≥
(αi−ai)(u

(1)
−ǫ)

aiαi

. By the arbitrari-

ness of ǫ ∈ (0, u(1)), we have

lim inf
t→+∞

min
Ω̄
vi(·, t) ≥

(αi − ai)u
(1)

aiαi

:= v
(1)
i > 0.(2.7)

By (2.3) and (2.6), we have (2.1) and, by (2.4) and (2.7), we have (2.2). The
proof is completed. �

3. Global stability of the positive constant steady state Ũ

The main concern of this section is to prove the global stability of Ũ defined
in (1.4). The main result is as follows.

Theorem 3.1. If (H1) and (H2) hold, then the positive constant steady state

Ũ of problem (1.1) defined in (1.4) is globally asymptotically stable.

Proof. In order to prove the theorem, we will use basically the method of
upper and lower solutions combined with the monotone iterative method. More
concretely, if we can construct 2n+ 2 sequences, namely {ū(j)}+∞

j=1 , {u
(j)}+∞

j=1 ,

{v̄
(j)
i }+∞

j=1, {v
(j)
i }+∞

j=1 for i = 1, . . . , n, which satisfy the following properties:

i) u(j) ≤ lim inft→+∞ minΩ̄ u(·, t) ≤ u(x, t) ≤ lim supt→+∞
maxΩ̄ u(·, t)

≤ ū(j), j = 1, 2, . . .,

ii) v
(j)
i ≤ lim inft→+∞ minΩ̄ vi(·, t) ≤ vi(x, t) ≤ lim supt→+∞

maxΩ̄ vi(·, t)

≤ v̄
(j)
i , i = 1, . . . , n, j = 1, 2, . . .,

iii) {ū(j)}+∞

j=1 and {v̄
(j)
i }+∞

j=1 are nonincreasing in j for i = 1, . . . , n,

iv) {u(j)}+∞

j=1 and {v
(j)
i }+∞

j=1 are nondecreasing in j for i = 1, . . . , n,

v) limj→+∞ ū(j)= ũ=limj→+∞ u(j) and limj→+∞ v̄
(j)
i = ṽi=limj→+∞ v

(j)
i

for i = 1, . . . , n,

then we obtain Theorem 3.1. So, in the following, our task is to construct the
sequences which satisfy i)-v).

Let φ(s1, . . . , sn) = 1/k−
∑n

i=1 αisi and ψi(s) =
αi−ai

aiαi

s, where s, s1, . . . , sn

∈ (0,+∞) and i = 1, . . . , n. It is easy to see that ∂φ
∂si

< 0 and ψ′

i(s) > 0.
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Then we construct the sequences {ū(j)}+∞

j=1 , {u
(j)}+∞

j=1 , {v̄
(j)
i }+∞

j=1 , {v
(j)
i }+∞

j=1 as
follows:

ū(1) =
1

k
, v̄

(1)
i =

(αi − ai)ū
(1)

aiαi

, i = 1, . . . , n,

u(1) =
1

k
−

n
∑

i=1

αiv̄
(1)
i , v

(1)
i =

(αi − ai)u
(1)

aiαi

, i = 1, . . . , n,

ū(j+1)=φ(v
(j)
1 , . . . , v(j)n ), j = 1, 2, . . . , v̄

(j)
i = ψi(ū

(j)), i = 1, . . . , n, j = 2, . . .

u(j) = φ(v̄
(j)
1 , . . . , v̄(j)n ), j = 1, 2, . . . , v

(j)
i = ψi(u

(j)), i = 1, . . . , n, j = 2, . . . .

First, we prove the sequences {ū(j)}+∞

j=1 , {u
(j)}+∞

j=1 , {v̄
(j)
i }+∞

j=1 , {v
(j)
i }+∞

j=1 sat-

isfy i) and ii) by induction. By Theorem 2.1, we obtain i) and ii) hold for j = 1,
then we assume i) and ii) hold for j = m > 1. Since lim inft→+∞ minΩ̄ vi(·, t) ≥

v
(m)
i > 0, then for any ǫ ∈ (0, v

(m)
i ), there exists T̂ ǫ

1 >> 1 such that vi(x, t) ≥

v
(m)
i − ǫ for any (x, t) ∈ Ω̄ × [T̂ ǫ

1 ,+∞). Then by (1.1)u and for any (x, t) ∈

Ω× (T̂ ǫ
1 ,+∞), we have

ut − d0∆u ≤ u2

(

1

u+
∑n

i=1 αi(v
(m)
i − ǫ)

− k

)

= u2

[

1− k
∑n

i=1 αi(v
(m)
i − ǫ)− ku

u+
∑n

i=1 αi(v
(m)
i − ǫ)

]

.

By Lemma 2.2 and arbitrariness of ǫ, we obtain lim supt→+∞
maxΩ̄ u(·, t) ≤

1/k−
∑n

i=1 αiv
(m)
i = ū(m+1). Then repeat the proof of Theorem 2.1 by replace

ū(1) with ū(m+1), we can prove i) and ii) hold for j = m+ 1.
Next, we will prove iii) and iv) hold by induction. Recall the monotone

properties of φ and ψi, we obtain v̄
(2)
i = ψi(ū

(2)) < ψi(ū
(1)) = v̄

(1)
i since

ū(2) < ū(1), and u(2) = φ(v̄
(2)
1 , . . . , v̄

(2)
n ) > φ(v̄

(1)
1 , . . . , v̄

(1)
n ) = u(1), and v

(2)
i =

ψi(u
(2)) > ψi(u

(1)) = v
(1)
i . Assume ū(m+1) < ū(m), v̄

(m+1)
i < v̄

(m)
i , u(m+1) >

u(m) and v
(m+1)
i > v

(m)
i , then repeat the above proof, we have ū(m+2) < ū(m+1),

v̄
(m+2)
i < v̄

(m+1)
i , u(m+2) > u(m+1) and v

(m+2)
i > v

(m+1)
i .

Finally, we prove v) holds. Assume limj→+∞ u(j) = u, limj→+∞ v
(j)
i = vi,

limj→+∞ ū(j) = ū and limj→+∞ v̄
(j)
i = v̄i. It is obvious that 0 < u ≤ ū,

0 < vi ≤ v̄i and u, vi, ū, v̄i satisfy

u = φ(v̄1, . . . , v̄n), ū = φ(v1, . . . , vn), vi = ψi(u), v̄i = ψi(ū), i = 1, . . . , n.

(3.1)

Obviously, (3.1) implies

u =
1

k
−

n
∑

i=1

αiv̄i, ū =
1

k
−

n
∑

i=1

αivi, vi =
αi − ai
aiαi

u, v̄i =
αi − ai
aiαi

ū.(3.2)
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By virtue of (3.2), we obtain

u =
1

k
−

n
∑

i=1

αi − ai
ai

ū, ū =
1

k
−

n
∑

i=1

αi − ai
ai

u,

which implies (1 + n −
∑n

i=1 αi/ai)(ū − u) = 0, and we have ū = u by (H2).
Then we get v̄ = v by (3.2). The proof is completed. �
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