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MORE ON SUMS OF HILBERT SPACE FRAMES

A. Najati, M. R. Abdollahpour, E. Osgooei, and M. M. Saem

Abstract. In this paper we establish some new results on sums of Hilbert
space frames and Riesz bases. We also provide a correction to some
recently established results in [2].

1. Introduction

Throughout this paper, H denotes a separable Hilbert space with the inner
product 〈·, ·〉. Recall that a sequence {fi}i∈I ⊆ H is a frame for H if there exist
0 < A 6 B < ∞ such that

(1.1) A‖f‖2 6
∑
i∈I

|〈f, fi〉|
2 6 B‖f‖2

for all f ∈ H. The constants A and B are called a lower and upper frame
bounds, respectively.

We call a sequence {fi}i∈I ⊆ H a Bessel sequence for H, if the right hand
inequality in (1.1) holds for all f ∈ H.

Let {fi}i∈I be a Bessel sequence for H. Then the bounded operator

T : H → l2, T f = {〈f, fi〉}i∈I

is called the analysis operator of {fi}i∈I and its adjoint

T ∗ : l2 → H, T ∗({ci}i∈I) =
∑
i∈I

cifi,

is called the synthesis operator of {fi}i∈I . If {fi}i∈I is a frame for H, the frame
operator for {fi}i∈I is the operator S : H → H given by Sf =

∑
i∈I〈f, fi〉fi.

It is clear that 〈Sf, f〉 =
∑

i∈I |〈f, fi〉|
2 for all f ∈ H. Therefore, S is positive

and invertible. This provides the frame decomposition

f =
∑
i∈I

〈f, S−1fi〉fi =
∑
i∈I

〈f, fi〉S
−1fi

for all f ∈ H.
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A sequence {fi}i∈I ⊆ H is called a Riesz basis for H, if span{fi}i∈I = H
and there exist 0 < A 6 B < ∞ such that

(1.2) A
∑
i

|ci|
2
6 ‖

∑
i

cifi‖
2
6 B

∑
i

|ci|
2

holds for every finite scalar sequence {ci}. The constants A and B are called
the lower and upper Riesz basis bounds, respectively.

We will use the following lemma in the rest of paper.

Lemma 1.1 ([1], Lemma A.7.1). If H and K are Hilbert spaces and T : H → K
is a bounded operator with closed range, then there exists a bounded operator
T † : K → H such that

TT †Tf = Tf, f ∈ H.

The operator T † is called a pseudo-inverse of T.

2. Main results

The following assertion is stated in [2] as Proposition 2.1.

Assertion 2.1. Let {fi}i∈I be a frame for H with the frame operator S,
frame bounds A 6 B and let L : H −→ H be a bounded operator. Then
{Lfi}i∈I is a frame for H if and only if L is invertible on H. Moreover, in this
case the frame operator for {Lfi}i∈I is LSL∗ and the new frame bounds are
A‖L−1‖−2, B‖L‖2.

In this note, we show that Assertion 2.1 is not true in general. Indeed, if
{fi}i∈I is a frame for Hilbert space H and L : H −→ H is a bounded invertible
operator, then {Lfi}i∈I is a frame for H but the converse is not true in general.
In the proof of Proposition 2.1 of [2], the authors proved that LSL∗ is invertible.
But, this does not imply that L is invertible on H. It should be noted that
in [2], Proposition 2.1 has been used in Corollaries 2.2, 2.3 and in the proof of
Proposition 4.1.

Example 2.2. Let {en}
∞
n=1 be an orthonormal basis for a Hilbert space H.

Define a shift operator L on H by L(en) = en−1 if n > 1 and L(e1) = 0. It
is clear that {L(en)}

∞
n=1 is a frame for H, but L is not invertible although

LL∗ = I. Moreover, {L∗(en)}
∞
n=1 is not a frame for H.

We can correct Assertion 2.1 as follows:

Proposition 2.3. Let {fi}i∈I be a frame for H with the frame operator S,
frame bounds A 6 B and let L : H −→ H be a bounded operator. Then
{Lfi}i∈I is a frame for H if and only if L is surjective. Moreover, in this
case the frame operator for {Lfi}i∈I is LSL∗ and the new frame bounds are
A‖L†‖−2 and B‖L‖2, where L† is the pseudo-inverse of L.

Proof. If {Lfi}i∈I is a frame for H, then its frame operator LSL∗ is invertible.
So L is surjective. The converse follows from Corollary 5.3.2 of [1]. �
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We also have:

Proposition 2.4. Let {fi}i∈I be a frame for H with the frame operator S and
let L : H −→ H be a bounded operator. Then {Lfi}i∈I and {L∗fi}i∈I are
frames for H if and only if L is invertible. Moreover, in this case the frame
operators for {Lfi}i∈I and {L∗fi}i∈I are LSL∗ and L∗SL, respectively.

Proof. If {Lfi}i∈I and {L∗fi}i∈I are frames for H, then their frame operators
LSL∗ and L∗SL are invertible. So L and L∗ are surjective and L is invertible.
The converse is clear. �

In [2], Corollary 2.2 can be corrected as below.

Corollary 2.5. Let {fi}i∈I be a frame for H with the frame operator S, frame
bounds A 6 B and let L : H −→ H be a bounded operator. Then {fi +Lfi}i∈I

is a frame for H if and only if I + L is surjective. Moreover, in this case the
frame operator for the new frame is (I + L)S(I + L∗) with the frame bounds
A‖(I +L)†‖−2 and B‖I +L‖2, where (I +L)† is a pseudo-inverse of I +L. In
particular, if L is a positive operator (or just L > −I), then {fi +Lfi}i∈I is a
frame for H with the frame operator S + SL+ SL∗ + LSL∗.

Corollary 2.6. Let {fi}i∈I be a frame for H and P : H −→ H be a bounded
operator. If P 2 = P, then for all a 6= −1, {fi + aPfi}i∈I is a frame for H.

Proof. If a 6= −1, then we have (I + aP )(I − a
a+1P ) = I. This implies that

I + aP is invertible and so {fi + aPfi}i∈I is a frame for H. �

Proposition 2.7. Let {fi}i∈I be a sequence in H such that
∑

i∈I〈f, fi〉fi con-
verges for all f ∈ H. If L : H −→ H is a bounded operator such that {Lfi}i∈I

and {L∗fi}i∈I are frames for H, then {fi}i∈I is a frame for H.

Proof. Let us define

U : H −→ H, U(f) :=
∑
i∈I

〈f, fi〉fi.

Let SL be the frame operator for {Lfi}i∈I . Then SL = LUL∗ is invertible. So L
is surjective. Similarly, we infer that L∗ is surjective. Therefore L is invertible
and so {fi}i∈I is a frame for H with the frame operator L−1SL(L

∗)−1. �

Proposition 2.8. Let {fi}i∈I be a Riesz basis for H with analysis operator T ,
Riesz basis bounds A ≤ B, and let L : H −→ H be a bounded operator. Then
{Lfi}i∈I is a Riesz basis for H if and only if L is invertible on H. Moreover
in this case, the analysis operator for {Lfi}i∈I is TL = TL∗ and the new Riesz
basis bounds are ‖ L−1 ‖−2 A, ‖ L ‖2 B.

Proof. Since the analysis operator for {Lfi}i∈I is TL = TL∗, L is invertible if
and only if {Lfi}i∈I is a Riesz basis for H. �
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Corollary 2.9. If {fi}i∈I is a Riesz basis for H and L : H −→ H is a bounded
operator, then {fi+Lfi}i∈I is a Riesz basis for H if and only if I+L is invertible
on H. In this case the analysis operator for new frame is TI+L = T (I + L∗)
and the new Riesz basis bounds are ‖ (I + L)−1 ‖−2 A, ‖ I + L ‖2 B.

We recall that if {fi}i∈I is a frame for H, then the frame {gi}i∈I is called
an alternate dual frame of {fi}i∈I , if

f =
∑
i∈I

〈f, gi〉fi, f ∈ H.

Corollary 2.10. Let {fi}i∈I be a Riesz basis for H with frame operator S and
{gi}i∈I be an alternate dual frame of {fi}i∈I . Suppose that a and b are real
numbers such that −1 /∈ σ(S−a+b−1). Then {Safi + Sbgi}i∈I is a Riesz basis
for H.

Here, we also show that the equivalence of part (1) and (2) in Proposition
3.1 of [2], is not true in general. Indeed, if T1L

∗
1+T2L

∗
2 is an invertible operator,

then {L1fi + L2gi}i∈I is a frame for H but the converse is not true.

Example 2.11. Let {en}
∞
n=1 be an orthonormal basis for H and T be the

analysis operator of {en}
∞
n=1. Define a shift operator L on H as in Example

2.2. Letting L1 = L2 = L and fn = gn = en for each n ∈ N, in Proposition 3.1
of [2], we see that {2L(en)}

∞
n=1 is a frame for H but 2TL∗ is not a surjective

operator. Indeed, T is an invertible operator, but L∗ is not surjective.

Proposition 2.12. Let {fi}i∈I and {gi}i∈I be Bessel sequences in H with
analysis operators T1, T2, respectively. Also, let L1, L2 : H −→ H. Then the
following are equivalent:

(1) {L1fi + L2gi}i∈I is a Riesz basis for H.
(2) T1L

∗
1 + T2L

∗
2 is an invertible operator on H.

Proof. (1) ⇔ (2) {L1fi + L2gi}i∈I is a Riesz basis for H if and only if its
analysis operator T is invertible on H where

Tf = {〈f, L1fi + L2gi〉}i∈I

= {〈L∗
1f, fi〉+ 〈L∗

2f, gi〉}i∈I

= T1L
∗
1f + T2L

∗
2f. �

3. Applications to Gabor frames

For x, y ∈ R we consider the operators Ex and Ty on L2(R) defined by
(Exf)(t) = e2πixtf(t) and (Tyf)(t) = f(t− y). It is easy to prove that Ex and
Ty are unitary with E∗

x = E−x and T ∗
y = T−y. A Gabor frame is a frame for

L2(R) of the form {EmbTnag}m,n∈Z, where a, b > 0 and g ∈ L2(R) is a fixed
function. We use (g, a, b) to denote {EmbTnag}m,n∈Z.

Proposition 3.1. Let S, T ∈ B(H). Then I − TS is surjective if and only if
I − ST is surjective.
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Proof. Let I − TS be surjective. Then, by using Lemma 1.1 we have

(I − ST )(I + S(I − TS)†T ) = (I − ST ) + (S − STS)(I − TS)†T

= I − ST + S(I − TS)(I − TS)†T

= I − ST + ST = I,

so I − ST is surjective. �

Corollary 3.2. Let x, y ∈ R and c ∈ C with |c| = 1. Then the following are
equivalent:

(i) I + cTxEy is a surjective operator on L2(R).
(ii) I + cEyTx is a surjective operator on L2(R).

Lemma 3.3. Let T be a surjective and normal bounded linear operator on a
Hilbert space. Then T is invertible.

Proof. Assume that T is not injective, i.e., there exists non-zero x ∈ kerT . By
normality, ‖T ∗x‖ = ‖Tx‖ = 0. Therefore x is in the orthogonal complement of
the range of T . This implies that T is not surjective. �

In the following, we intend to correct Proposition 4.1 of [2].

Theorem 3.4. Let x, y ∈ R such that x2 + y2 6= 0 and let c ∈ C with |c| = 1.
Then I + cEyTx : L2(R) −→ L2(R) is not surjective.

Proof. It is enough we take x > 0. Let f : R −→ C be a function defined by

f(t) :=
n∑

k=1

(−1)kckρke
2πikytχ[kx,(k+1)x)(t),

where ρ1 = 1 and ρk+1 = ρke
−2πikxy for k > 1. By a simple computation, we

get

‖f‖2 =

∫
R

|f(t)|2 dt = nx, ‖(I + cEyTx)f‖
2 = 2x.

Therefore f ∈ L2(R) and I + cEyTx cannot be invertible. Since Ey and Tx are
unitary, I + cEyTx is normal. The previous lemma implies I + cEyTx can not
be surjective. �

Corollary 3.5. Let x, y ∈ R such that x2 + y2 6= 0 and let c ∈ C with |c| = 1.
If (g, a, b) is a Gabor frame and ay, bx ∈ Z, then (g + cEyTxg, a, b) is not a
Gabor frame.

Proof. It is clear that EmbTna(g + cEyTxg) = (I + dTxEy)(EmbTnag), where
|d| = 1. If (g + cEyTxg, a, b) is a Gabor frame, then I + dTxEy is surjective on
L2(R) by Proposition 2.1. So I + dEyTx is surjective by Corollary 3.2. Using
Theorem 3.4, we get a contradiction. �
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Corollary 3.6. Let x, y ∈ R such that x2 + y2 6= 0 and let c ∈ C with |c| = 1.
If (g, a, b) is a Gabor frame, then the following sequence is not a Gabor frame

{EmbTna(g + ce2πi(nay−mbx)EyTxg)}m,n∈Z.

Proof. Because

EmbTna(g + ce2πi(nay−mbx)EyTxg) = (I + ce2πixyTxEy)(EmbTnag),

we get the result. �
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