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EXISTENCE OF THREE SOLUTIONS FOR A NAVIER

BOUNDARY VALUE PROBLEM INVOLVING THE

p(x)-BIHARMONIC

Honghui Yin and Ying Liu

Abstract. The existence of at least three weak solutions is established
for a class of quasilinear elliptic equations involving the p(x)-biharmonic
operators with Navier boundary value conditions. The technical approach
is mainly based on a three critical points theorem due to Ricceri [11].

1. Introduction

In this paper, we consider the problem of the type
{

△2
p(x)u = λa(x)f(x, u) + µg(x, u), x ∈ Ω

u = △u = 0, x ∈ ∂Ω,
(1)

where Ω ⊂ R
N (N ≥ 2) is a bounded domain with boundary of class C1, λ, µ ≥

0 are real numbers, p(x) ∈ C0(Ω) with max{2, N2 } < p− := infx∈Ω p(x) ≤

p+ := supx∈Ω p(x), △2
p(x) := △(|△u|p(x)−2△u) is the operator of fourth order

called the p(x)-biharmonic operator, which is a natural generalization of the
p-biharmonic operator (where p > 1 is a constant).

In [10], the authors studied the following super-linear p-biharmonic elliptic
problem with Navier boundary conditions:

{

△2
pu = g(x, u), x ∈ Ω,

u = △u = 0, x ∈ ∂Ω.
(2)

By means of Morse theory, the authors proved the existence of a nontrivial so-
lution to (2) having a linking structure around the origin under the conditions:
Ω ⊆ R

N is bounded with smooth boundary, N ≥ 2p + 1, g : Ω × R → R is
a Carathéodory function such that for some C > 0, |g(x, t)| ≤ C(1 + |t|q−1)

for a.e. x ∈ Ω and all t ∈ R, 1 ≤ q ≤ p∗ = Np
N−2p . Moreover, in case of both
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resonance near zero and non-resonance at ∞, the existence of two nontrivial
solutions was obtained.

In [9], the authors considered the following problem:
{

△2
pu = λf(x, u) + µg(x, u), x ∈ Ω,

u = △u = 0, x ∈ ∂Ω.
(3)

By the three critical points theorem obtained by Ricceri [11], they established
the existence of three weak solutions to problem (3).

For more results for fourth-order elliptic equations with variable exponent,
see [1, 2] and the reference therein.

To obtain the existence of at least three solutions of problem (1), the tech-
nical approach is mainly based on a three critical points theorem by B. Ricceri
[11].

Theorem A. Let X be a reflexive real Banach space; I ⊆ R an interval;
Φ : X → R a continuously Gâteaux differentiable and sequentially weakly lower

semicontinuous C1 functional, bounded on each bounded subset of X, whose

Gâteaux derivative admits a continuous inverse on X∗; Ψ : X → R a C1

functional with compact Gâteaux derivative. Assume that

(i) lim‖u‖→∞(Φ(u) + λΨ(u)) = ∞ for all λ ∈ I;
(ii) There exists ρ ∈ R such that:

sup
λ∈I

inf
t∈X

(Φ(t) + λ(Ψ(t) + ρ)) < inf
t∈X

sup
λ∈I

(Φ(t) + λ(Ψ(t) + ρ)).

Then there exists a non-empty open set Λ ⊆ I and a positive real number σ with

the following property: for each λ ∈ Λ and every C1 functional J : X → R with

compact Gâteaux derivative, there exists δ > 0 such that for each µ ∈ [0, δ], the
equation

Φ′(u) + λΨ′(u) + µJ ′(u) = 0(4)

has at least three solutions in X whose norms are less than σ.

To obtain the existence of at least three solutions of (1), we assume the
following conditions:

(A) g : Ω× R → R is a Carathéodory function, sup|ζ|≤s |g(·, ζ)| ∈ L1(Ω) for
all s > 0;

(B) a(x) ∈ Lr(x)(Ω), f : Ω × R → R is a Carathéodory function, |f(x, t)| ≤
b(x) + α|t|q(x)−1 for x ∈ Ω and t ∈ R, where α ≥ 0 is a constant, b(x) ∈

Lq0(x)r0(x)(Ω), r(x), q(x) ∈ C(Ω), r− > 1, p− > q+ ≥ q− ≥ 1, and

q(x) <
r(x) − 1

r(x)
p∗(x), ∀x ∈ Ω,

here

p∗(x) =

{

Np(x)
N−p(x) , p(x) < N

∞, p(x) ≥ N

and r0(x) is the conjugate function of r(x), i.e., 1
r(x) +

1
r0(x) = 1.
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The paper is organized as follows. In Section 2, we recall some facts that
will be needed in the paper. In Section 3, we establish our main results.

2. Notations and preliminaries

For the reader’s convenience, we remind some background facts concern-
ing the Lebesgue-Sobolev spaces with variable exponent and introduce some
notations used below. For more details, we refer the reader to [5, 7, 12, 13].

Set

C+(Ω) = {h : h ∈ C(Ω) and h(x) > 1 for all x ∈ Ω}.

For p(x) ∈ C+(Ω), define the space

Lp(x)(Ω) = {u | u is a measurable real-valued funcion,

∫

Ω

|u(x)|p(x)dx < ∞}.

We can introduce a norm on Lp(x)(Ω) by

|u|p(x) = inf{λ > 0 |

∫

Ω

|
u(x)

λ
|p(x)dx ≤ 1}.

and (Lp(x)(Ω), |·|p(x)) becomes a Banach space, and we call it variable exponent
Lebesgue space.

The space Wm,p(x)(Ω) is defined by

Wm,p(x)(Ω) = {u ∈ Lp(x)(Ω) | Dβu ∈ Lp(x)(Ω), |β| ≤ m},

where β is the multi-index and |β| is the order, m is a positive integer.

Wm,p(x)(Ω)

is a special class of so-called generalized Orlicz-Sobolev spaces. From [6], we
know that Wm,p(x)(Ω) can be equipped with the norm ‖u‖Wm,p(x)(Ω) as Banach
spaces, where

‖u‖Wm,p(x)(Ω) =
∑

|β|≤m

|Dαu|p(x).

From [5], we know that spaces Lp(x)(Ω) and Wm,p(x)(Ω) are separable, reflexive
and uniform convex Banach spaces.

Now we denote X = W 2,p(x)(Ω) ∩W
1,p(x)
0 (Ω), where W

1,p(x)
0 (Ω) denote the

closure of C∞
0 (Ω) in W 1,p(x)(Ω). For any u ∈ X , define

‖u‖ = inf{λ > 0 |

∫

Ω

|
△u(x)

λ
|p(x)dx ≤ 1}.

Then it is easy to see that X endowed with the above norm is also a separable,
reflexive Banach space. We denote by X∗ the dual space to X .

Remark 2.1. According to [14], ‖u‖W 2,p(x)(Ω) is equivalent to |△u|p(x) in X .

Consequently, the norms ‖u‖W 2,p(x)(Ω) and ‖u‖ are equivalent.

From now on, we will use ‖ · ‖ instead of ‖ · ‖W 2,p(x)(Ω) on X .
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Proposition 2.1 (see [5, 12]). The conjugate space of Lp(x)(Ω) is Lp0(x)(Ω).

For any u ∈ Lp(x)(Ω) and v ∈ Lp0(x)(Ω), we have
∫

Ω

|uv|dx ≤ (
1

p−
+

1

(p0)−
)|u|p(x)|v|p0(x) ≤ 2|u|p(x)|v|p0(x).

Proposition 2.2 (see [5, 12]). If we denote ρ(u) =
∫

Ω |u|p(x)dx, ∀u ∈ Lp(x)(Ω),
then

(i) |u|p(x) < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1);

(ii) |u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x); |u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρ(u) ≤

|u|p
−

p(x);

(iii) |u|p(x) → 0(∞) ⇔ ρ(u) → 0(∞).

From Proposition 2.2, the following inequalities hold:

‖u‖p
−

≤

∫

Ω

| △u(x)|p(x)dx ≤ ‖u‖p
+

, if ‖u‖ ≥ 1;(5)

‖u‖p
+

≤

∫

Ω

| △u(x)|p(x)dx ≤ ‖u‖p
−

, if ‖u‖ ≤ 1.(6)

Proposition 2.3 (see [4]). Suppose that the boundary of Ω possesses the cone

property and a(x) ∈ Lr(x)(Ω), a(x) > 0 for a.e. x ∈ Ω, r(x) ∈ C(Ω) and

r− > 1. If p(x), q(x) ∈ C(Ω) and

1 ≤ q(x) <
r(x) − 1

r(x)
p∗(x), ∀x ∈ Ω,

then there is a compact embedding X →֒ L
q(x)
a(x)(Ω).

Proposition 2.4. If Ω ⊂ RN is a bounded domain, then the imbedding X →֒
C0(Ω) is compact whenever N

2 < p−.

Proof. It is well known that X →֒ W 2,p−

(Ω) ∩W
1,p−

0 (Ω) is a continuous em-

bedding, and the embedding W 2,p−

(Ω)∩W
1,p−

0 (Ω) →֒ C0(Ω) is compact when
N
2 < p− and Ω is bounded. So we obtain the embedding X →֒ C0(Ω) which is

compact whenever N
2 < p−. �

From Proposition 2.4, there exists a positive constant k depending on p(x),
N and Ω, such that

‖u‖∞ = sup
x∈Ω

|u(x)| ≤ k‖u‖, ∀u ∈ X.(7)

3. Existence of three solutions

Fix x0 ∈ Ω and choose r1, r2 with 0 < r1 < r2, such that B(x0, r2) ⊆ Ω,
where B(x, r) stands for the open ball in R

N of radius r centered at x. Let

σ = max{[
12(N + 2)2(r1 + r2)

(r2 − r1)3
]p

− 2π
N
2 (rN2 − rN1 )

NΓ(N2 )
, [
12(N + 2)2(r1 + r2)

(r2 − r1)3
]p

+ 2π
N
2 (rN2 − rN1 )

NΓ(N2 )
},
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θ =























min{[ 3N

(r2 − r1)(r2 + r1)
]p

− 2π
N
2 [(r2 + r1)

N − (2r1)
N ]

2NNΓ(N2 )
, [

3N

(r2 − r1)(r2 + r1)
]p

+ 2π
N
2 [(r2 + r1)

N − (2r1)
N ]

2NNΓ(N2 )
},

if N < 4r1
r2−r1

,

min{[ 12r1
(r2 − r1)2(r2 + r1)

]p
− 2π

N
2 [(r2 + r1)

N − (2r1)
N ]

2NNΓ(N2 )
, [

12r1
(r2 − r1)2(r2 + r1)

]p
+ 2π

N
2 [(r2 + r1)

N − (2r1)
N ]

2NNΓ(N2 )
},

if N ≥ 4r1
r2−r1

.

We define Φ : X → R as

Φ(u) =

∫

Ω

1

p(x)
|△u(x)|p(x)dx.(8)

Then

(Φ′(u), v) =

∫

Ω

|△u|p(x)−2△u△vdx, ∀u, v ∈ X.

Denote

F (x, u) =

∫ u

0

a(x)f(x, t)dt, G(x, u) =

∫ u

0

g(x, t)dt,

Ψ(u) = −

∫

Ω

F (x, u)dx, J(u) = −

∫

Ω

G(x, u)dx.

Then for ∀u, v ∈ X ,

(Ψ′(u), v) = −

∫

Ω

a(x)f(x, u)vdx,

(J ′(u), v) = −

∫

Ω

g(x, u)vdx.

We say that u ∈ X is a weak solution of problem (1) if
∫

Ω

|△u|p(x)−2△u△vdx = λ

∫

Ω

a(x)f(x, u)vdx + µ

∫

Ω

g(x, u)vdx, ∀v ∈ X,

i.e.,

(Ψ′(u), v) + λ(Ψ′(u), v) + µ(J ′(u), v) = 0.

It follows that we can find the weak solutions of (1) applying Theorem A.
We first obtain the following results.

Lemma 3.1. If Φ is defined in (8), then (Φ′)−1 : X∗ → X exists and it is

continuous.

Proof. First, we show that Φ′ is uniformly monotone. In fact, for any ζ, η ∈ RN ,
we have the following inequality (see [8]):

(|ζ|p−2ζ − |η|p−2η)(ζ − η) ≥
1

2p
|ζ − η|p, p ≥ 2.

Thus, we deduce that

(Φ′(u)− Φ′(v), u− v) ≥
1

2p+

∫

Ω

|△u−△v|p(x)dx, ∀u, v ∈ X,

i.e., Φ′ is uniformly monotone.
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From (5), we can see that for any u ∈ X with ‖u‖ ≥ 1, and hence we have
that

(Φ′(u), u)

‖u‖
≥ ‖u‖p

−−1.

This means that Φ′ is coercive on X .
By a standard argument, we know that Φ′ is hemicontinuous. Therefore,

the conclusion follows immediately by applying Theorem 26.A [15]. �

Lemma 3.2. If condition (B) holds, then for any λ ∈ R, Φ(u) + λΨ(u) is

coercive on X.

Proof. For |f(x, t)| ≤ b(x)+α|t|q(x)−1 and the Young’s inequality, we have that

|F (x, t)| ≤ |a(x)|(b(x)|t| +
α

q(x)
|t|q(x)) ≤ |a(x)|((b(x))q

0(x) + (1 + α)|t|q(x)).

Then from condition (B) and Proposition 2.3 we know that F (x, u) is integrable
on Ω for any u ∈ X , Ψ(u) is well defined.

Combining it with Proposition 2.3, we have

Φ(u) + λΨ(u)

=

∫

Ω

1

p(x)
|∇u(x)|p(x)dx− λ

∫

Ω

F (x, u)dx

≥
‖u‖p

−

p+
− |λ|

∫

Ω

|a(x)|[|b(x)|q
0(x) + (1 + α)|u|q(x)]dx

≥
‖u‖p

−

p+
− |λ|C1 − |λ|(1 + α)|u|q

†

(q(x),|a(x)|)

≥
‖u‖p

−

p+
− |λ|C1 − |λ|C2‖u‖

q† ,

where

† =

{

+, if |u|q(x),|a(x)| ≤ 1,
−, if |u|q(x),|a(x)| ≥ 1

and C1, C2 are positive constants. Since q† < p−, we can see that Φ(u)+λΨ(u)
is coercive. �

Furthermore, we suppose

(C) There exist two positive constants c, d with k > c and kθmin{dp
+

, dp
−

}
> c such that F (x, t) ≥ 0 for each (x, t) ∈ {Ω\B(x0, r1)} × [0, d], and

m(Ω) max
(x,t)∈Ω×[−c,c]

F (x, t) ≤
p−

p+σmax{dp+
, dp

−}
(
c

k
)p

+

∫

B(x0,r1)

F (x, d)dx,

where m(Ω) is the Lebesgue measure of Ω.
Then we have the following result.
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Lemma 3.3. If condition (C) holds, then there exist r > 0 and u∗ ∈ X such

that

Φ(u∗) > r(9)

and

m(Ω) max
(x,t)∈Ω×[−c,c]

F (x, t) ≤ rp−
∫

Ω
F (x, u∗)dx

∫

Ω | △u(x)|p(x)dx
.(10)

Proof. Let us define

u∗(x) =











0, x ∈ Ω\B(x0, r2),
d[3(l4−r42)−4(r1+r2)(l

3−r32)+6r1r2(l
2−r22)]

(r2−r1)3(r1+r2)
, x ∈ B(x0, r2)\B(x0, r1),

d, x ∈ B(x0, r1),

where l = dist(x, x0) =

√

∑N
i=1(xi − x0

i )
2. Then, we have

∂u∗(x)

∂xi
=

{

0, x ∈ Ω\B(x0, r2) ∪B(x0, r1),
12d[l2(xi−x0

i )−(r1+r2)l(xi−x0
i )+r1r2(xi−x0

i )]
(r2−r1)3(r1+r2)

, x∈B(x0, r2)\B(x0, r1),

∂2u∗(x)

∂x2
i

=

{

0, x ∈ Ω\B(x0, r2) ∪B(x0, r1),
12d[r1r2+(2l−r1−r2)(xi−x0

i )
2/l−(r1+r2−l)l]

(r2−r1)3(r1+r2)
, x∈B(x0, r2)\B(x0, r1),

and
N
∑

i=1

∂2u∗(x)

∂x2
i

=

{

0, x ∈ Ω\B(x0, r2) ∪B(x0, r1),
12d[(N+2)l2−(N+1)(r1+r2)l+Nr1r2]

(r2−r1)3(r1+r2)
, x ∈ B(x0, r2)\B(x0, r1).

It is easy to verify that u∗ ∈ X and, in particular, we have

(11) θmin{dp
+

, dp
−

} ≤

∫

Ω

|△u∗|p(x)dx ≤ σmax{dp
+

, dp
−

}.

If we let

r =
1

p+
(
c

k
)p

+

,

from (11) and the assumption that kθmin{dp
+

, dp
−

} > c, we have

Φ(u∗) =

∫

Ω

1

p(x)
|△u∗(x)|p(x)dx

≥
1

p+

∫

Ω

|△u∗(x)|p(x)dx

≥
1

p+
θmin{dp

+

, dp
−

}

>
1

p+
(
c

k
)p

+

= r.(12)

Therefore, (9) follows.



1824 HONGHUI YIN AND YING LIU

Since 0 ≤ u∗ ≤ d for any x ∈ Ω, the condition (C) ensures that
∫

Ω\B(x0,r2)

F (x, u∗)dx+

∫

B(x0,r2)\B(x0,r1)

F (x, u∗)dx ≥ 0.

Therefore, we have

m(Ω) max
(x,t)∈Ω×[−c,c]

F (x, t) ≤
p−

p+σmax{dp+
, dp

−}
(
c

k
)p

+

∫

B(x0,r1)

F (x, d)dx

≤ rp−

∫

B(x0,r1)
F (x, d)dx

∫

Ω | △u(x)|p(x)dx

≤ rp−
∫

Ω
F (x, u∗)dx

∫

Ω | △u(x)|p(x)dx
.

This implies (10). �

Finally, we have the following main theorem.

Theorem 3.1. Assume conditions (A), (B) and (C) hold. Then there exist

a non-empty open set Λ ⊆ R and a positive real number σ with the following

property: for each λ ∈ Λ, there exists δ > 0 such that for each µ ∈ [0, δ],
problem (1) has at least three weak solutions whose norms are less than σ.

Proof. By the definitions of Φ,Ψ, and J , we know that Ψ′ is compact, and
Φ is weakly lower semi-continuous and bounded on each bounded subset of
X . From Lemma 3.1 we can see that (Φ′)−1 is well defined, from condition
(A), and J is well defined and continuously Gâteaux differentiable on X , with
compact derivative. Then we can use Theorem A to obtain the result. Now we
show that the hypotheses of Theorem A are fulfilled.

From Lemma 3.2, we can see (i) is satisfied.
From (7) we know that

sup
x∈Ω

|u(x)| ≤ k‖u‖, ∀u ∈ X.

Hence, if we let r = 1
p+ (

c
k )

p+

, for each u ∈ X such that

Φ(u) ≤ r,(13)

by (5), (6) and the assumption k > c, we have

sup
x∈Ω

|u(x)| ≤ k‖u‖

≤ kmax{(

∫

Ω

| △u(x)|p(x)dx)
1

p+ , (

∫

Ω

| △u(x)|p(x)dx)
1

p− }

≤ k(rp+)
1

p+

≤ c.(14)
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Due to Lemma 3.3, there exists u∗ ∈ X such that

Φ(u∗) > r > 0

and

m(Ω) max
(x,t)∈Ω×[−c,c]

F (x, t) ≤ rp−
∫

Ω F (x, u∗)dx
∫

Ω | △u(x)|p(x)dx
.

Let u1(x) = u∗(x) on Ω, and then by (14) we have

sup
u∈Φ−1((−∞,r])

(−Ψ(u)) ≤

∫

Ω

sup
{u|Φ(u)≤r}

F (x, u)dx

≤

∫

Ω

sup
|t|≤c

F (x, t)dx

< m(Ω) max
(x,t)∈Ω×[−c,c]

F (x, t)dx

≤ rp−
∫

Ω F (x, u1)dx
∫

Ω
| △u1(x)|p(x)dx

≤ r
−Ψ(u1)

Φ(u1)
.

Fixing any h > 1, it is easy to see that

sup
u∈Φ−1((−∞,r])

(−Ψ(u)) +
r
−Ψ(u1)
Φ(u1)

− supu∈Φ−1((−∞,r])(−Ψ(u))

h
< r

−Ψ(u1)

Φ(u1)
.

By Proposition 1.3 of [3], when ρ satisfies

sup
u∈Φ−1((−∞,r])

(−Ψ(u)) +
r
−Ψ(u1)
Φ(u1)

− supu∈Φ−1((−∞,r])(−Ψ(u))

h
< ρ < r

−Ψ(u1)

Φ(u1)
,

we have

sup
λ∈R

inf
u∈X

(Φ(u) + λ(ρ+Ψ(u))) < inf
u∈X

sup
λ∈[0,α1]

(Φ(u) + λ(ρ+Ψ(u))),

where α1 = hr

r
−Ψ(u1)

Φ(u1)
−sup

u∈Φ−1((−∞,r])(−Ψ(u))
> 0.

Then (ii) of Theorem A holds with I = [0, α1]. Then all the hypotheses of
Theorem A are fulfilled. By Theorem A, we know that there exist an open
interval Λ ⊆ I and a positive constant σ such that for any λ ∈ Λ, there exists
δ > 0 and for each µ ∈ [0, δ], problem (1) has at least three weak solutions
whose norms are less than σ. �
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