
Bull. Korean Math. Soc. 50 (2013), No. 6, pp. 1781–1797
http://dx.doi.org/10.4134/BKMS.2013.50.6.1781

LAGUERRE CHARACTERIZATIONS

OF HYPERSURFACES IN R
n

Shichang Shu and Yanyan Li

Abstract. Let x : M → Rn be an n − 1-dimensional hypersurface in
Rn, L be the Laguerre Blaschke tensor, B be the Laguerre second fun-
damental form and D = L + λB be the Laguerre para-Blaschke tensor
of the immersion x, where λ is a constant. The aim of this article is to
study Laguerre Blaschke isoparametric hypersurfaces and Laguerre para-
Blaschke isoparametric hypersurfaces in Rn with three distinct Laguerre
principal curvatures one of which is simple. We obtain some classification
results of such isoparametric hypersurfaces.

1. Introduction

In Laguerre differential geometry, T. Li and C. Wang [5] studied invariants of
hypersurfaces in Euclidean space Rn under the Laguerre transformation group.
The Laguerre transformations are the Lie sphere transformations which take
oriented hyperplanes in Rn to oriented hyperplanes and preserve the tangential
distance.

Let UR
n be the unit tangent bundle over Rn. An oriented sphere in R

n cen-
tered at p with radius r can be regarded as the oriented sphere {(x, ξ) | x−p =
rξ} in URn, where x is the position vector and ξ the unit normal vector of
the sphere. An oriented hyperplane in Rn with constant unit normal vec-
tor ξ and constant real number c can be regarded as the oriented hyperplane
{(x, ξ) | x · ξ = c} in URn. A diffeomorphism φ : URn → URn which takes
oriented spheres to oriented spheres, oriented hyperplanes to oriented hyper-
planes, preserving the tangential distance of any two spheres, is called a La-
guerre transformation. All Laguerre transformations in UR

n form a group of

dimension (n+1)(n+2)
2 , called Laguerre transformation group. An oriented hy-

persurface x :M → Rn can be identified as the submanifold (x, ξ) :M → URn,
where ξ is the unit normal of x. Two hypersurfaces x, x∗ :M → Rn are called
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Laguerre equivalent, if there is a Laguerre transformation φ : URn → URn

such that (x∗, ξ∗) = φ ◦ (x, ξ) (see [4]).
In [5], T. Li and C. Wang gave a complete Laguerre invariant system for hy-

persurfaces in R
n. They proved that two umbilical free oriented hypersurfaces

in Rn with non-zero principal curvatures are Laguerre equivalent if and only if
they have the same Laguerre metric g and Laguerre second fundamental form
B. We should notices that the Laguerre geometry of surfaces in R3 has been
studied by Blaschke in [1] and other authors in [3, 6, 7].

Let R
n+3
2 be the space Rn+3 equipped with the inner product 〈X,Y 〉 =

−X1Y1 +X2Y2 + · · ·+Xn+2Yn+2 −Xn+3Yn+3. Let C
n+2 be the light-cone in

Rn+3 given by Cn+2 = {X ∈ R
n+3
2 | 〈X,X〉 = 0}. Let LG be the subgroup of

orthogonal groupO(n+1, 2) on R
n+3
2 given by LG = {T ∈ O(n+1, 2) | ζT = ζ},

where ζ = (1,−1,0, 0) and 0 ∈ Rn is a light-like vector in R
n+3
2 .

Let x : M → Rn be an umbilic free hypersurface with non-zero principal
curvatures, ξ : M → Sn−1 be its unit normal vector. Let {e1, e2, . . . , en−1}
be the orthonormal basis for TM with respect to dx · dx, consisting of unit
principal vectors. The structure equations of x :M → Rn are (see [4])

(1.1) ej(ei(x)) =
∑

k

Γk
ijek(x)+kiδijξ, ei(ξ) = −kiei(x), i, j, k = 1, . . . , n−1,

where ki 6= 0 is the principal curvature corresponding to ei. Let

(1.2) ri =
1

ki
, r =

r1 + r2 + · · ·+ rn−1

n− 1
,

be the curvature radius and mean curvature radius of x respectively. We define
Y = ρ(x · ξ,−x · ξ, ξ, 1) : M → Cn+2 ⊂ R

n+3
2 , where ρ =

√
∑

i(ri − r)2 > 0.
From [5], we know that the Laguerre metric g of the immersion x can be defined
by g = 〈dY, dY 〉. Let {E1, E2, . . . , En−1} be an orthonormal basis for g with
dual basis {ω1, ω2, . . . , ωn−1}. The Laguerre form C, Laguerre Blaschke tensor

L and Laguerre second fundamental form B of the immersion x are defined by

(1.3) C =

n−1
∑

i=1

Ciωi, L =

n−1
∑

i,j=1

Lijωi ⊗ ωj, B =

n−1
∑

i,j=1

Bijωi ⊗ ωj ,

respectively, where Ci, Lij and Bij are defined by formulas (2.10)–(2.12) in
Section 2. We should notices that g, C, L and B are Laguerre invariants (see
[5]).

By making use of the two important Laguerre invariants, the Laguerre
Blaschke tensor L and the Laguerre second fundamental form B of the im-
mersion x, we define a symmetric (0, 2) tensor D = L + λB which is so called
the Laguerre para-Blaschke tensor of x, where λ is a constant. An eigenvalue of
the Laguerre Blaschke tensor is called a Laguerre Blaschke eigenvalue of x, an
eigenvalue of the Laguerre second fundamental form is called a Laguerre prin-

cipal curvature of x and an eigenvalue of the Laguerre para-Blaschke tensor is
called a Laguerre para-Blaschke eigenvalue of x. An umbilic free hypersurface
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x : M → Rn is called a Laguerre isoparametric hypersurface if C ≡ 0 and
the Laguerre principal curvatures of the immersion x are constant, an umbilic
free hypersurface x : M → Rn is called a Laguerre Blaschke isoparametric

hypersurface if C ≡ 0 and the Laguerre Blaschke eigenvalues of the immer-
sion x are constant, and an umbilic free hypersurface x : M → Rn is called a
Laguerre para-Blaschke isoparametric hypersurface if C ≡ 0 and the Laguerre
para-Blaschke eigenvalues of the immersion x are constant. An umbilic free
hypersurface x : M → Rn is called a Laguerre para-isotropic hypersurface, if
there are two functions λ and µ on x such that L + λB + µg = 0 and C ≡ 0.
If λ = 0, we call x a Laguerre isotropic hypersurface. It should be noted that
if x is a Laguerre para-isotropic hypersurface, or a Laguerre isotropic hyper-
surface, then the Laguerre para-Blaschke eigenvalues, or the Laguerre Blaschke
eigenvalues of x are all equal.

We define the Laguerre embedding τ : URn
0 → URn (see [5]). Let Rn+1

1 be
the Minkowski space with the inner product 〈X,Y 〉 = X1Y1 + · · · + XnYn −
Xn+1Yn+1. Let ν = (1,0, 1) be the light-like vector in R

n+1
1 , 0 ∈ R

n−1. Let Rn
0

be the degenerate hyperplane in R
n+1
1 defined by Rn

0 = {X ∈ R
n+1
1 | 〈X, ν〉 =

0}. We define

(1.4) UR
n
0 = {(x, ξ) ∈ R

n+1
1 × R

n+1
1 | 〈x, ν〉 = 0, 〈ξ, ξ〉 = 0, 〈ξ, ν〉 = 1}.

The Laguerre embedding τ : URn
0 → URn is defined by

(1.5) τ(x, ξ) = (x′, ξ′) ∈ UR
n,

where x = (x1, x0, x1) ∈ R×Rn−1 ×R, ξ = (ξ1 +1, ξ0, ξ1) ∈ R×Rn−1 ×R and

(1.6) x′ =

(

−
x1

ξ1
, x0 −

x1

ξ1
ξ0

)

, ξ′ =

(

1 +
1

ξ1
,
ξ0

ξ1

)

.

Let x :M → R
n
0 be a space-like oriented hypersurface in the degenerate hyper-

plane Rn
0 . Let ξ be the unique vector in R

n+1
1 satisfying 〈ξ, dx〉 = 0, 〈ξ, ξ〉 = 0,

〈ξ, ν〉 = 1. From τ(x, ξ) = (x′, ξ′) ∈ URn, we may obtain a hypersurface
x′ :M → Rn.

We should notice that it is one of the important aims to characterize hyper-
surfaces in terms of Laguerre invariants. Concerning this topic, recently, T. Li,
H. Li and C. Wang [4] studied the Laguerre geometry of hypersurfaces with
parallel Laguerre second fundamental form in Rn and obtained the following
result:

Theorem 1.1 ([4]). Let x : M → Rn be an umbilic free hypersurface with

non-zero principal curvatures. If the Laguerre second fundamental form of x is

parallel, then x is Laguerre equivalent to an open part of one of the following

hypersurfaces:
(1) the oriented hypersurface x : Sk−1 ×Hn−k → Rn given by Example 2.1;

or

(2) the image of τ of the oriented hypersurface x : Rn−1 → Rn
0 given by

Example 2.2.
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The aim of this article is to continue this topic, we shall study Laguerre
Blaschke isoparametric hypersurfaces and Laguerre para-Blaschke isoparamet-
ric hypersurfaces in Rn with three distinct Laguerre principal curvatures one
of which is simple. We obtain the following results:

Theorem 1.2. Let x : M → Rn be an n − 1-dimensional Laguerre Blaschke

isoparametric hypersurface in Rn(n ≥ 5) with three distinct Laguerre princi-

pal curvatures one of which is simple. Then x is a Laguerre isoparametric

hypersurface with non-parallel Laguerre second fundament form or a Laguerre

isotropic hypersurface.

Theorem 1.3. Let x : M → R
n be an n − 1-dimensional Laguerre para-

Blaschke isoparametric hypersurface in Rn(n ≥ 5) and D = L + λB, λ 6= 0,
be the Laguerre para-Blaschke tensor of x. If x has three distinct Laguerre

principal curvatures one of which is simple, then

(i) x is a Laguerre isoparametric hypersurface with non-parallel Laguerre

second fundament form, or

(ii) x is a Laguerre para-isotropic hypersurface, or

(iii) x is Laguerre equivalent to an open part of the image of τ of the oriented

hypersurface x : Rn−1 → R
n
0 given by Example 2.2.

From Theorem 1.2 and Theorem 1.3, we easily see that:

Corollary 1.4. Let x : M → Rn be an n − 1-dimensional Laguerre para-

Blaschke isoparametric hypersurface in Rn(n ≥ 5) and D = L + λB be the

Laguerre para-Blaschke tensor of x. If x has three distinct Laguerre principal

curvatures one of which is simple, then

(i) x is a Laguerre isoparametric hypersurface with non-parallel Laguerre

second fundament form, or

(ii) x is a Laguerre isotropic hypersurface for λ = 0, or
(iii) x is a Laguerre para-isotropic hypersurface or x is Laguerre equivalent

to an open part of the image of τ of the oriented hypersurface x : Rn−1 → Rn
0

given by Example 2.2 for λ 6= 0.

2. Laguerre invariants and fundamental formulas

In this section, we review the Laguerre invariants and fundamental formulas
on Laguerre geometry of hypersurfaces in R

n, for more details, see [5].
Let x : M → Rn be an n − 1-dimensional umbilical free hypersurface with

vanishing Laguerre form in Rn. Let {E1, . . . , En−1} denote a local orthonor-
mal frame for Laguerre metric g = 〈dY, dY 〉 with dual frame {ω1, . . . , ωn−1}.
Putting Yi = Ei(Y ), then we have

(2.1) N =
1

n− 1
∆Y +

1

2(n− 1)2
〈∆Y,∆Y 〉Y,

(2.2) 〈Y, Y 〉 = 〈N,N〉 = 0, 〈Y,N〉 = −1,
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and the following orthogonal decomposition:

(2.3) R
n+3
2 = Span{Y,N} ⊕ Span{Y1, . . . , Yn−1} ⊕ V,

where {Y,N, Y1, . . . , Yn−1, η, ℘} forms a moving frame in R
n+3
2 and V = {η, ℘}

is called Laguerre normal bundle of x. We use the following range of indices
throughout this paper:

1 ≤ i, j, k, l,m ≤ n− 1.

The structure equations on x with respect to the Laguerre metric g can be
written as

(2.4) dY =
∑

i

ωiYi,

(2.5) dN =
∑

i

ψiYi + ϕη,

(2.6) dYi = −ψiY − ωiN +
∑

j

ωijYj + ωin+1η,

(2.7) d℘ = −ϕY −
∑

i

ωin+1Yi,

where {ψi, ωij , ωin+1, ϕ} are 1-forms on x with

(2.8) ωij + ωji = 0, dωi =
∑

j

ωij ∧ ωj ,

and
(2.9)

ψi =
∑

j

Lijωj, Lij = Lji, ωin+1 =
∑

j

Bijωj , Bij = Bji, ϕ =
∑

i

Ciωi.

We define Ẽi = riei, 1 ≤ i ≤ n− 1, then {Ẽ1, . . . , Ẽn−1} is an orthonormal

basis for III = dξ · dξ and {Ei = ρ−1Ẽi} is an orthonormal basis for the
Laguerre metric g with dual frame {ω1, . . . , ωn−1}. Lij , Bij and Ci are locally
defined functions and satisfy

Lij = ρ−2

{

Hessij(log ρ)− Ẽi(log ρ)Ẽj(log ρ) +
1

2

(

|∇ log ρ|2 − 1
)

δij

}

,

(2.10)

Bij = ρ−1(ri − r)δij ,(2.11)

Ci = −ρ−2
{

Ẽi(r) − Ẽi(log ρ)(ri − r)
}

,(2.12)

where g =
∑

i(ri− r)
2III = ρ2III, ri and r are defined by (1.2), Hessij and ∇

are the Hessian matrix and the gradient with respect to the third fundamental
form III = dξ · dξ of x (see [5]).
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Defining the covariant derivative of Ci, Lij , Bij by

(2.13)
∑

j

Ci,jωj = dCi +
∑

j

Cjωji,

(2.14)
∑

k

Lij,kωk = dLij +
∑

k

Likωkj +
∑

k

Lkjωki,

(2.15)
∑

k

Bij,kωk = dBij +
∑

k

Bikωkj +
∑

k

Bkjωki.

We have from [5] that

(2.16) dωij =
∑

k

ωik ∧ ωkj −
1

2

∑

k,l

Rijklωk ∧ ωl, Rijkl = −Rjikl,

(2.17)
∑

i

Bii = 0,
∑

i,j

B2
ij = 1,

∑

i

Bij,i = (n− 2)Cj , trL = −
R

2(n− 2)
.

(2.18) Lij,k = Lik,j ,

(2.19) Ci,j − Cj,i =
∑

k

(BikLkj −BjkLki),

(2.20) Bij,k −Bik,j = Cjδik − Ckδij ,

(2.21) Rijkl = Ljkδil + Lilδjk − Likδjl − Ljlδik,

where Rijkl and R denote the curvature tensor and the scalar curvature with
respect to the Laguerre metric g on x. Since the Laguerre form C ≡ 0, we have
for all indices i, j, k

(2.22) Bij,k = Bik,j ,
∑

k

BikLkj =
∑

k

BkjLki.

Denote by D =
∑

i,j Dijωi ⊗ωj the (0, 2) Laguerre para-Blaschke tensor, then

(2.23) Dij = Lij + λBij , 1 ≤ i, j ≤ n,

where λ is a constant. The covariant derivative of Dij is defined by

(2.24)
∑

k

Dij,kωk = dDij +
∑

k

Dikωkj +
∑

k

Dkjωki.

From (2.18) and (2.22), we have for all indices i, j, k that

(2.25) Dij,k = Dik,j .

We recall the following examples of hypersurfaces in Rn with parallel La-
guerre second fundamental form (see [4]):
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Example 2.1 ([4]). For any integer k, 1 ≤ k ≤ n−1, we define a hypersurface
x : Sk−1 ×Hn−k → Rn by

x(u, v, w) =
( u

w
(1 + w),

v

w

)

,

where Hn−k = {(v, w) ∈ R
n−k+1
1 | v · v − w2 = −1, w > 0} denotes the

hyperbolic space embedded in the Minkowski space R
n−k+1
1 . From [4], we

know that x has two distinct Laguerre principal curvatures

B1 = −

√

n− k

(k − 1)(n− 1)
, B2 =

√

k − 1

(n− k)(n− 1)
,

the Laguerre form is zero and the Laguerre second fundamental form of x is
parallel.

Example 2.2 ([4]). For any positive integers m1, . . . ,ms with m1+ · · ·+ms =
n− 1 and any non-zero constants λ1, . . . , λs, we define x : Rn−1 → Rn

0 to be a
spacelike oriented hypersurface in Rn

0 given by

x =

{

λ1|u1|
2 + · · ·+ λs|us|

2

2
, u1, u2, . . . , us,

λ1|u1|
2 + · · ·+ λs|us|

2

2

}

,

where (u1, . . . , us) ∈ Rm1 × · · · × Rms = Rn−1 and |ui|
2 = ui · ui, i = 1, . . . , s.

Then τ ◦ (x, ξ) = (x′, ξ′) : Rn−1 → URn, and we obtain the hypersurfaces
x′ : Rn−1 → Rn. From [4], we know that x has s(s ≥ 3) distinct Laguerre
principal curvatures:

Bi =
ri − r

√
∑

i(ri − r)2
, 1 ≤ i ≤ s,

where

ri =
1

ki
, r =

k1r1 + k2r2 + · · ·+ ksrs

n− 1
,

and ki 6= 0 is the principal curvature corresponding to ei. We also know that
the Laguerre form is zero, Lij = 0 for 1 ≤ i, j ≤ n− 1 and the Laguerre second
fundamental form of x is parallel.

3. Propositions and lemmas

Throughout this section, we shall make the following convention on the
ranges of indices:

1 ≤ a, b ≤ m1, m1 + 1 ≤ p, q ≤ m1 +m2,

m1 +m2 + 1 ≤ α, β ≤ m1 +m2 +m3 = n− 1, 1 ≤ i, j, k ≤ n− 1.

Let L, B and D denote the n×n-symmetric matrices (Lij), (Bij) and (Dij),
respectively, where Lij , Bij and Dij are defined by (2.10), (2.11) and (2.23).
From (2.22) and (2.23), we know that BL = LB, DL = LD and BD = DB.
Thus, we may choose a local orthonormal basis {E1, E2, . . . , En} such that

Lij = Liδij , Bij = Biδij , Dij = Diδij ,
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where Li, Bi and Di are the Laguerre Blaschke eigenvalues, the Laguerre prin-
cipal curvatures and the Laguerre para-Blaschke eigenvalues of the immersion
x.

In the proof of the following propositions and theorems, we agree on the
fact that a local orthonormal basis {E1, E2, . . . , En} may be always chosen
such that Lij = Liδij , Bij = Biδij , Dij = Diδij .

Proposition 3.1. Let x : M → Rn be an n − 1-dimensional hypersurface

with vanishing Laguerre form in Rn. If the multiplicity of a Laguerre principal

curvature is constant and greater than 1, then this Laguerre principal curvature

is constant along its leaf.

Proof. Let Bi, i = 1, . . . , n− 1, be the Laguerre principal curvatures of x with
constant multiplicities. We choose a local orthonormal frame {E1, . . . , En−1}
such that Ei is a unit principal vector with respect to Bi. From (2.15), we have

(3.1) Bij,k = Ek(Bi)δij + Γj
ik(Bi −Bj),

where Γj
ik is the Levi-Civita connection for the Laguerre metric g given by

(3.2) ωij =
∑

k

Γj
ikωk, Γj

ik = −Γi
jk.

From (2.22), we know that Bii,j = Bij,i. Thus from (3.1), we get

(3.3) Ej(Bi) = Γj
ii(Bi − Bj) for i 6= j.

Without loss of generality, we may assume that B1 is the Laguerre principal
curvature of x with constant multiplicity m1 and m1 ≥ 2, that is, for 1 ≤ a ≤
m1 we have Ba = B1. From (3.3), we have

Ea(B1) = Γa
11(B1 −Ba) = 0 for a 6= 1,

and
E1(B1) = E1(Ba) = Γ1

aa(Ba −B1) = 0 for a 6= 1.

Thus
Ea(B1) = 0 for any a.

This implies that B1 is constant along its leaf. We complete the proof of
Proposition 3.1. �

We may prove the following proposition by reasoning as in [2].

Proposition 3.2. Let x : M → Rn be an n − 1-dimensional hypersurface in

Rn(n ≥ 5) with vanishing Laguerre form and three distinct Laguerre principal

curvatures B1, B2, B3 one of which is simple. Then either B1, B2, B3 are

constants or Bap,n−1 = 0 for every a, p.

Proof. From (2.16), (2.8) and (3.2), the curvature tensor of x may be given by
(see [2])

Rijkl =Ek(Γ
j
il)− El(Γ

j
ik) +

∑

m

Γj
imΓm

kl(3.4)
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−
∑

m

Γj
imΓm

lk +
∑

m

Γm
il Γ

j
mk −

∑

m

Γm
ikΓ

j
ml.

Since x has three distinct Laguerre principal curvatures B1, B2, B3 one of
which is simple and n ≥ 5, without loss of generality, we may assume that
m3 = 1, m1 ≥ 1 and m2 ≥ 2. From (2.17), we have

m1dB1 +m2dB2 +m3dB3 = 0,

m1B1dB1 +m2B2dB2 +m3B3dB3 = 0.

Thus

m1dB1

B3 −B2
=

m2dB2

B1 −B3
=

m3dB3

B2 −B1
.(3.5)

From Proposition 3.1 and (3.5), we have

(3.6) Ep(B2) = Ep(B1) = Ep(B3) = 0,

and from (3.1), we have

Γp
ab = Γα

ab = 0, a 6= b, Γα
pq = 0, p 6= q, Γp

aa = Γp
bb, Γα

aa = Γα
bb,(3.7)

Γp
aα =

Bap,α

B1 −B2
, Γa

αp =
Bαa,p

B3 −B1
, Γα

pa =
Bpα,a

B2 −B3
.(3.8)

(i) If m1 ≥ 2, from Proposition 3.1 and (3.5), we have

Ea(B1) = Ea(B2) = Ea(B3) = 0.(3.9)

From (3.1), (3.3), (3.6) and (3.9), we have

Γp
ab = Γa

pq = 0, Γa
n−1n−1 = Γp

n−1n−1 = 0,(3.10)

Γn−1
aa =

En−1(B1)

B1 −B3
, Γn−1

pp =
En−1(B2)

B2 −B3
.(3.11)

From (3.8), we have

Γp
an−1 =

Bap,n−1

B1 −B2
, Γp

n−1b =
Bbp,n−1

B3 − B2
, Γn−1

bq =
Bbq,n−1

B1 −B3
,(3.12)

Γn−1
qb =

Bbq,n−1

B2 −B3
.

Thus, from (3.4), (3.7) and (3.10)–(3.12), we have

Rapbq = Eb(Γ
p
aq)− Eq(Γ

p
ab) +

∑

m

Γp
amΓm

bq

−
∑

m

Γp
amΓm

qb +
∑

m

Γm
aqΓ

p
mb −

∑

m

Γm
abΓ

p
mq(3.13)

= Γp
an−1Γ

n−1
bq − Γp

an−1Γ
n−1
qb + Γn−1

aq Γp
n−1b − Γn−1

ab Γn−1
pq

=
Bap,n−1Bbq,n−1 +Baq,n−1Bbp,n−1 + En−1(B1)En−1(B2)δabδpq

(B1 −B3)(B3 −B2)
.
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On the other hand, from (2.21), we have

(3.14) Rapbq = −(La + Lp)δabδpq.

(3.13) and (3.14) imply that

Bap,n−1Bbq,n−1 +Baq,n−1Bbp,n−1

= {−(La + Lp)(B1 −B3)(B3 −B2)− En−1(B1)En−1(B2)}δabδpq.

Putting

(3.15) ̺a,p = −(La + Lp)(B1 −B3)(B3 −B2)− En−1(B1)En−1(B2),

we get

Bap,n−1Bbq,n−1 +Baq,n−1Bbp,n−1 = ̺a,pδabδpq.

If a = b, we have

(3.16) 2Bap,n−1Baq,n−1 = ̺a,pδpq.

From (3.15), we know that ̺a,p depends on a, p. If L1 = L2 = · · · = Ln−1,
from (3.15), we see that for any a, p, all ̺a,p are equal. If there is p0, such
that Bap0,n−1 6= 0, 1 ≤ a ≤ m1. By (3.16), we have Bap,n−1 = 0 for other
p(p 6= p0). By (3.16) again, if p = q, then B2

ap,n−1 =
̺a,p

2 for any p. Since for

any a, p, all ̺a,p are equal, we have B2
ap0,n−1 =

̺a,p0

2 =
̺a,p

2 = B2
ap,n−1 = 0 for

p0, p(p 6= p0). Thus Bap0,n−1 = 0, this is a contradiction. Therefore we know
that Bap,n−1 = 0 for any a, p.

If at least two of L1, L2, . . . , Ln−1 are not equal, since m2 ≥ 2 and m1 ≥ 2,
we may prove that there exists at most one p, such that ̺a,p 6= 0 for any a,
1 ≤ a ≤ m1 and there exists at most one a, such that ̺a,p 6= 0 for any p,
m1+1 ≤ p ≤ m1+m2. In fact, if there exists more than one p, for example p1,
p2, (p1 6= p2) such that ̺a,p1

6= 0, ̺a,p2
6= 0. By (3.16), we have B2

ap,n−1 =
̺a,p

2

for any p. Thus B2
ap1,n−1 =

̺a,p1

2 6= 0, B2
ap2,n−1 =

̺a,p2

2 6= 0. By (3.16) again,
we see that Bap1,n−1Bap2,n−1 = 0, this is a contradiction. Thus, we know that
there exists at most one p, such that ̺a,p 6= 0 for any a, 1 ≤ a ≤ m1. By the
same proof as above, we also know that there exists at most one a, such that
̺a,p 6= 0 for any p, m1 + 1 ≤ p ≤ m1 +m2.

If there exists at most one p, such that ̺a,p 6= 0 for any a, possibly, say
̺a,p0

6= 0 for any a. From (3.15), we have

(3.17) La + Lp = −
En−1(B1)En−1(B2)

(B1 −B3)(B3 −B2)
, p 6= p0.

By (3.17), we know that La = Lb for any a, b. On the other hand, since we
know that there exists at most one a, such that ̺a,p 6= 0 for any p, possibly,
say ̺a0,p 6= 0 for any p. By (3.15), we also have

La + Lp = −
En−1(B1)En−1(B2)

(B1 −B3)(B3 −B2)
, a 6= a0,
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and we know that Lp = Lq for any p, q. Thus, from (3.15) we see that only
̺a,p = 0 for any a, p holds exactly. Thus, by (3.16), we have Bap,n−1 = 0 for
any p and a.

(ii) If m1 = 1, from (3.3) and (3.7), we have

Γ1
pq = Γn−1

pq = 0, Γp
n−1n−1 = Γp

11 = 0,(3.18)

Γ1
n−1n−1 =

E1(B3)

B3 −B1
, Γ1

pp =
E1(B2)

B2 −B1
,(3.19)

Γn−1
11 =

En−1(B1)

B1 −B3
, Γn−1

pp =
En−1(B2)

B2 −B3
.

From (3.4), (3.7), (3.8), (3.18) and (3.19), by a similar calculation as in (i), we
have

(3.20) 2B1p,n−1B1q,n−1 = υpδpq

for any p, q, where

υp = (B1 −B2)(B1 −B3)

{

−(Lp + Ln−1) +
E1(B2)E1(B3)

(B1 − B2)(B1 −B3)

(3.21)

+
[En−1(B2)− En−1(B3)]En−1(B2)

(B2 − B3)2
−
En−1(En−1(B2))

B2 −B3
+
En−1(B2)

(B2 −B3)2

}

.

From (3.21), we know that υp depends on p. If L1 = L2 = · · · = Ln−1, from
(3.21), we see that for any p, all υp are equal. By the same proof as in (i), we
know that B1p,n−1 = 0 for any p.

If at least two of L1, L2, . . . , Ln−1 are not equal, since m2 ≥ 2, by the same
proof as in (i), we easily know that there exists at most one p, such that υp 6= 0.

If for any p, υp = 0, by (3.20), we have B1p,n−1 = 0.
If there is p0, such that υp0

6= 0 and υp = 0, for other p(p 6= p0), we have

(3.22) υp0
= υp0

− υp = (B1 −B2)(B1 −B3)(Lp0
− Lp).

On the other hand, since m1 = 1, m3 = 1 and Bij,k is symmetric for all indices
i, j, k, interchanging 1 and n in the above equations, we also have,

(3.23) 2Bn−1p,1Bn−1q,1 = ωpδpq,

where

ωp = (B3 −B2)(B3 −B1)

{

−(Lp + L1) +
En−1(B2)En−1(B1)

(B3 −B2)(B3 −B1)
(3.24)

+
[E1(B2)− E1(B1)]E1(B2)

(B2 −B1)2
−
E1(E1(B2))

B2 −B1
+

E1(B2)

(B2 −B1)2

}

.

From (3.24), we know that ωp depends on p. By the same assertion as above,
we know that there exists at most one p, such that ωp 6= 0.

If for any p, ωp = 0, by (3.23), we have B1p,n−1 = 0. Otherwise, we may
prove that ωp0

6= 0 for the above p0 in (3.22). In fact, by (3.20), we have
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B2
1p0,n−1 =

υp0

2 6= 0. On the other hand, by (3.23), we have B2
n−1p0,1 =

ωp0

2 .
Since B1p0,n−1 = Bn−1p0,1, we have ωp0

= υp0
6= 0. Since there exists at most

one p, such that ωp 6= 0, we know that for other p(p 6= p0), ωp = 0. By (3.24),
we also have

(3.25) υp0
= ωp0

= ωp0
− ωp = (B3 −B2)(B3 −B1)(Lp0

− Lp).

Thus, from (3.22) and (3.25), we have

(B1 −B3)(B1 − 2B2 +B3)(Lp0
− Lp) = 0.

If Lp0
= Lp, by (3.22), we have υp0

= 0, this contradicts with υp0
6= 0. Thus

B1 − 2B2 +B3 = 0,

and

dB1 − 2dB2 + dB3 = 0.(3.26)

From (3.5) and (3.26), we easily know that dB1 = dB2 = dB3 = 0, that is,
B1, B2, B3 are constants. We complete the proof of Proposition 3.2. �

4. Proof of theorems

Proof of Theorem 1.2. Let B1, B2, B3 be the three distinct Laguerre principal
curvatures of multiplicities m1, m2, m3 and one of which is simple. Since
n ≥ 5, without loss of generality, we may assume that m3 = 1, m1 ≥ 1 and
m2 ≥ 2. By Proposition 3.2, we know that either B1, B2, B3 are constants
or Bap,n−1 = 0 for any a, p. In the first case, we know that x is a Laguerre
isoparametric hypersurface with non-parallel Laguerre second fundament form.
In the second case, if Bap,n−1 = 0 for any a, p, we may consider two cases:

(i) If m1 ≥ 2, since Bap,n−1 = 0 for every a, p, setting p = q in (3.16),
we have ̺a,p = 0 for any a, p. From (3.15), we get for any 1 ≤ a ≤ m1 and
m1 + 1 ≤ p ≤ m1 +m2,

La + Lp = −
En−1(B1)En−1(B2)

(B1 −B3)(B3 −B2)
.(4.1)

Thus, we know that La = Lb for any a, b and Lp = Lq for any p, q. This implies
that x has at most three distinct Laguerre Blaschke eigenvalues La, Lp, Ln−1

with multiplicities m1, m2, 1 and m1 ≥ 2,m2 ≥ 2.
(ii) If m1 = 1, since B1p,n−1 = 0 for any p, setting p = q in (3.20), we have

υp = 0 for any p, m1 + 1 ≤ p ≤ m1 +m2. By (3.21),

Lp = − Ln−1 +
E1(B2)E1(B3)

(B1 −B2)(B1 −B3)

(4.2)

+
[En−1(B2)− En−1(B3)]En−1(B2)

(B2 −B3)2
−
En−1(En−1(B2))

B2 −B3
+

En−1(B2)

(B2 −B3)2
.

Thus, we know that x has at most three distinct Laguerre Blaschke eigenvalues
L1, Lp, Ln−1 with multiplicities 1, m2, 1 and m2 ≥ 2.
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Next, we may prove that x : M → Rn is only a Laguerre isotropic hyper-
surface, that is, the number of distinct Laguerre Blaschke eigenvalues is only
1. In fact, if La, Lp, Ln−1 are the three constant Laguerre Blaschke eigenvalues
with multiplicities m1, m2, 1 and the number of distinct Laguerre Blaschke
eigenvalues is 2 or 3. From (2.14), we have

(4.3) Lij,k = Ek(Li)δij + Γj
ik(Li − Lj),

where Γj
ik is the Levi-Civita connection for the Laguerre metric g.

From (2.18), we know that Lii,j = Lij,i. Thus

(4.4) Ej(Li) = Γj
ii(Li − Lj) for i 6= j.

If the number of distinct Laguerre Blaschke eigenvalues is 3, that is, La 6=
Lp 6= Ln−1, 1 ≤ a ≤ m1, m1 + 1 ≤ p ≤ m1 +m2 and m2 ≥ 2, from (4.4), we
have

(4.5) 0 = Ea(Lp) = Γa
pp(Lp − La), 0 = En−1(Lp) = Γn−1

pp (Lp − Ln−1).

Thus Γa
pp = Γn−1

pp = 0.
On the other hand, from (2.15), we have

(4.6) Bij,k = Ek(Bi)δij + Γj
ik(Bi −Bj),

where Γj
ik is the Levi-Civita connection for the Laguerre metric g.

From (2.22), we know that Bii,j = Bij,i. Thus

(4.7) Ej(Bi) = Γj
ii(Bi − Bj) for i 6= j.

We get

Ea(Bp) = Γa
pp(Bp −Ba) = 0, En−1(Bp) = Γn−1

pp (Bp −Bn−1) = 0.

That is, Ea(B2) = 0, En−1(B2) = 0. Since we assume that m2 ≥ 2, from
Proposition 3.1, we have Ep(B2) = 0. Thus, B2 is constant. Therefore, from
(3.5), we know that B1 and B3 are constants.

If the number of distinct Laguerre Blaschke eigenvalues is 2, when m1 ≥ 2,
without loss of the generality, we may assume that La = Lp 6= Ln−1. By (4.4),
we have

0 = En−1(La) = Γn−1
aa (La − Ln−1).

Thus, Γn−1
aa = 0. On the other hand, by (4.7)

En−1(B1) = Γn−1
aa (B1 −B3) = 0.

From (3.5), we have

m1Ei(B1)

B3 −B2
=
m2Ei(B2)

B1 −B3
=
m3Ei(B3)

B2 −B1
.(4.8)

By Proposition 3.1, we have Ea(B1) = 0, 1 ≤ a ≤ m1 and Ep(B2) = 0,
m1 + 1 ≤ p ≤ m1 +m2. By (4.8), we have Ea(B3) = Ep(B3) = En−1(B3) = 0,
that is, B3 is constant. By (3.5) again, we know that B1 and B2 are constants.
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When m1 = 1, without loss of the generality, we may assume that L1 =
Ln−1 6= Lp. By (4.4), we have

0 = E1(Lp) = Γ1
pp(Lp − L1), 0 = En−1(Lp) = Γn−1

pp (Lp − Ln−1).

Thus Γ1
pp = Γn−1

pp = 0. On the other hand, by (4.7)

E1(B2) = Γ1
pp(B2 −B1) = 0, En−1(B2) = Γn−1

pp (B2 −B3) = 0.

From Proposition 3.1, we have Ep(B2) = 0, 2 ≤ p ≤ 1 + m2. Thus B2 is
constant. By (3.5) again, we know that B1 and B3 are constants.

To sum up, we know that if the number of distinct Laguerre Blaschke eigen-
values is 2 or 3, then B1, B2 and B3 are constants.

From (4.6), we have Bab,k = Bpq,k = Bαβ,k = 0 for any a, b, p, q, α, β, k.
Since we know that Bap,n−1 = 0 for every a, p, we get Bij,k = 0 for any i, j, k,
that is, the Laguerre second fundamental form of x is parallel. From (2.15), it
follows that

(4.9) 0 = dBiδij + (Bi −Bj)ωij , 1 ≤ i, j ≤ n− 1.

If Bi 6= Bj , we have ωij = 0. If for some k such that ωik 6= 0 and ωkj 6= 0,
by (4.9) we have Bi = Bk = Bj , this is in contradiction with Bi 6= Bj . Thus,
from (2.16), we have Rijij = 0 for Bi 6= Bj . From (2.21), it follows that

(4.10) Li + Lj = 0 for Bi 6= Bj .

Let B1 = Ba, B2 = Bp, B3 = Bα be the three distinct Laguerre principal
curvatures with multiplicities m1, m2, m3 one of which is simple, where 1 ≤
a ≤ m1, m1 + 1 ≤ p ≤ m1 +m2, m1 +m2 + 1 ≤ α ≤ n − 1. Since Ba 6= Bp,
Ba 6= Bα and Bp 6= Bα, from (4.10), we have La + Lp = 0, La + Lα = 0 and
Lp + Lα = 0. This implies that La = 0, Lp = 0 and Lα = 0 for any a, p, α.
That is Li = 0 for any i. This is a contradiction with the assumption that the
number of distinct Laguerre Blaschke eigenvalues is 2 or 3. Therefore, we know
that the number of distinct Laguerre Blaschke eigenvalues is only 1, that is, x
is only a Laguerre isotropic hypersurface. This completes the proof of Theorem
1.2. �

Proof of Theorem 1.3. By the same assertion as in the proof of Theorem 1.2,
we know that either B1, B2, B3 are constants and x is a Laguerre isoparametric
hypersurface with non-parallel Laguerre second fundament form, or Bap,n−1 =
0 for any a, p.

If Bap,n−1 = 0 for any a, p, we may consider two cases:
(i) If m1 ≥ 2, since Bap,n−1 = 0 for every a, p, setting p = q in (3.16), we

have ̺a,p = 0 for any a, p. From (3.15) and (2.23), we get for any 1 ≤ a ≤ m1

and m1 + 1 ≤ p ≤ m1 +m2,

Da +Dp = λ(B1 +B2)−
En−1(B1)En−1(B2)

(B1 −B3)(B3 −B2)
.(4.11)
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From (4.11), we know that for any a, all Da are the same and for any p, all Dp

are the same. Thus, we know that x has at most three distinct Laguerre para-
Blaschke eigenvalues Da, Dp, Dn−1 with multiplicities m1, m2, 1 and m1 ≥
2,m2 ≥ 2.

(ii) If m1 = 1, since B1p,n−1 = 0 for any p, setting p = q in (3.20), we have
υp = 0 for any p, m1 + 1 ≤ p ≤ m1 +m2. By (3.21) and (2.23),

Dp = −Dn−1 + λ(B2 +B3) +
E1(B2)E1(B3)

(B1 − B2)(B1 −B3)

(4.12)

+
[En−1(B2)− En−1(B3)]En−1(B2)

(B2 −B3)2
−
En−1(En−1(B2))

B2 −B3
+

En−1(B2)

(B2 −B3)2
.

From (4.12), we know that for any p, all Dp are the same. Thus, x has at
most three distinct para-Blaschke eigenvalues D1, Dp, Dn−1 with multiplicities
1, m2, 1 and m2 ≥ 2.

If the number of the distinct Laguerre para-Blaschke eigenvalues of Da, Dp,
Dn−1 is 1, then x is a Laguerre para-isotropic hypersurface.

If the number of the distinct Laguerre para-Blaschke eigenvalues of Da, Dp,
Dn−1 is 2, we may prove that this case does not occur. In fact, if m1 ≥ 2,
without loss of the generality, we may assume that Da = Dp 6= Dn−1. From
(2.24), we have

Dij,k = Ek(Di)δij + Γj
ik(Di −Dj),

where Γj
ik is the Levi-Civita connection for the Laguerre metric g.

From (2.25), we know that Dii,j = Dij,i. Thus

(4.13) Ej(Di) = Γj
ii(Di −Dj) for i 6= j.

By (4.13), we have

0 = En−1(Da) = Γn−1
aa (Da −Dn−1).

Thus, Γn−1
aa = 0.

From (4.7), we get

En−1(B1) = Γn−1
aa (B1 −B3) = 0.

Combining with Ea(B1) = 0, 1 ≤ a ≤ m1, Ep(B2) = 0, m1+1 ≤ p ≤ m1+m2,
(4.8) and (3.5), we easily see that B1, B2 and B3 are constants.

If m1 = 1, without loss of the generality, we may assume that D1 = Dn−1 6=
Dp. By (4.13), we have

0 = E1(Dp) = Γ1
pp(Dp −D1), 0 = En−1(Dp) = Γn−1

pp (Dp −Dn−1).

Thus Γ1
pp = Γn−1

pp = 0. On the other hand, by (4.7)

E1(B2) = Γ1
pp(B2 −B1) = 0, En−1(B2) = Γn−1

pp (B2 −B3) = 0.

Combining with Ep(B2) = 0, 2 ≤ p ≤ 1 +m2 and (3.5), we easily see that B1,
B2 and B3 are constants.
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By the same assertion as in the proof of Theorem 1.2, we know that the
Laguerre second fundamental form of x is parallel and Li = 0 for any i. Since
λ 6= 0, it follows that x has three distinct Laguerre para-Blaschke eigenvalues
λB1, λB2, λB3. This is a contradiction.

If the number of the distinct Laguerre para-Blaschke eigenvalues of Da, Dp,
Dn−1 is 3, that is, Da 6= Dp 6= Dn−1, 1 ≤ a ≤ m1, m1 + 1 ≤ p ≤ m1 +m2 and
m2 ≥ 2, from (4.13), we have

0 = Ea(Dp) = Γa
pp(Dp −Da), 0 = En−1(Dp) = Γn−1

pp (Dp −Dn−1).(4.14)

Thus Γa
pp = Γn−1

pp = 0.
By (4.7), we get

Ea(Bp) = Γa
pp(Bp −Ba) = 0, En−1(Bp) = Γn−1

pp (Bp −Bn−1) = 0.

That is, Ea(B2) = 0, En−1(B2) = 0. Combining with Ep(B2) = 0 and (3.5),
we know that B1, B2 and B3 are constants.

By the same assertion as in the proof of Theorem 1.2, we know that the
Laguerre second fundamental form of x is parallel and Li = 0 for any i. From
the result of Theorem 1.1 and Example 2.1–Example 2.2, we know that x is
Laguerre equivalent to an open part of the image of τ of the oriented hyper-
surface x : Rn−1 → Rn

0 given by Example 2.2. This completes the proof of
Theorem 1.3. �
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