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Abstract

In this study, we analyze the dependence structure of KOSPI and NYSE indices
based on a two-step estimation procedure. In the first step, we adopt ARMA-GARCH
models with Gaussian mixture innovations for marginal processes. In the second step,
time-varying copula parameters are estimated. By using these, we measure the de-
pendence between the two returns with Kendall’s tau and Spearman’s rho. The two
dependence measures for various copulas are illustrated.

Keywords: ARMA-GARCH models, copula, Gaussian mixture, time-varying copula pa-
rameter, two-step estimation.

1. Introduction

Copula has been widely used by many researchers when modeling the joint distribution
of random vectors with given marginal distributions. Gaussian, Student’s t, Clayton, Frank,
Gumbel and Plackett copulas are common examples: see Nelson (1999), Joe (1997) and
Cherubini et al. (2004). Since the copula determines the dependence structure of multivariate
distributions, the copula parameter estimation is a very important task. To correctly reflect
the dependence changes of asset returns, some authors proposed to use time-varying copula
parameters relying on the time-dependent variables or explanatory variables: see Gourieroux
and Monfort (1992), Rockinger and Jondeau (2006), Patton (2006b) and Chiou and Tsay
(2008), in a spirit similar to the GARCH models of Engle (1982) and Bollerslev (1986).

In this study, we analyze the dependence structure between two market indices, the Korea
Composite Stock Price Index (KOSPI) and New York Stock Exchange composite price
index (NYSE). To this end, we employ the two-step estimation procedure for the copula
based models which introduced by Patton (2006a) with time-varying copula parameters.
We apply ARMA-GARCH models with Gaussian mixture innovations (cf. Lee and Lee,
2009, 2011) to the individual returns. As a different approach, we refer to Lee and Lee
(2012), who examine stock market co-movement among three China stock markets based on
the GARCH-M models.
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This paper is organized as follows. In Section 2, we shortly review the relationship be-
tween copula and nonlinear dependence measures and describe the data set. In Section 3,
we introduce the two-step estimation procedure. In Section 4, we fit both returns to the
ARMA-GARCH models with Gaussian mixture innovations. In Section 5, we measure the
dependence between two returns by Kendall’s tau and Spearman’s rho based on the time-
varying copula parameters. Conclusion is provided in Section 6.

2. Nonlinear dependence measures and data set

2.1. Review of nonlinear dependence measures

The Pearson’s correlation coefficient is the most widely known measure of association
between random variables, however it evaluates only the linear relationship. Thus when
nonlinear relationship is of main interest, Pearson’s coefficient is not suitable. In this study,
we apply two nonparametric measures to evaluate the dependence between variables with
Kendall’s tau and Spearman’s rho. For convenience, we concentrate on the bivariate case.
These two dependence measures can be expressed using copula such as

Spearman’s rho := ρ = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3,

Kendall’s tau := τ = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1.

In particular for the Archimedean copulas, it holds

τ = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt

where ϕ is the generator of the copula C.

2.2. The data set

We analyze the two stock market indices, KOSPI and NYSE. We compute the daily returns
as 100 times the difference of the log of the prices. The daily returns range from December
1, 2008 to May 10, 2013 for both indices. The data set is obtained from finance.yahoo.com
and consists of 1079 bivariate time series. Table 2.1 reports the summary statistics for daily
returns of the KOSPI and NYSE for the whole period. We can see that both returns have
approximately zero mean and kurtosis greater than 3. Figure 2.1 illustrates the daily return
series of KOSPI and NYSE. From Figure 2.1, we can notice that the co-movement between
two returns is active in the latter half of 2011. Contrastively in the middle of 2010, NYSE
series shows high volatilities but KOSPI series doesn’t as much as the NYSE.

Table 2.1 Summary statistics for daily returns of the KOSPI and NYSE

Mean Median S.D. Min Max Skewness Kurtosis
KOSPI 0.055 0.062 1.352 -6.420 7.215 -0.312 3.392
NYSE 0.048 0.101 1.475 -9.484 7.065 -0.401 4.401
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Figure 2.1 Daily return series of the KOSPI and NYSE

3. Two-step estimation procedure for copula based models

Although there are many literatures on the estimation theory for copula, most of them
assume that the data is independent and identically distributed. However, iid assumption is
rejected for almost every financial time series. To overcome this restriction, Patton (2006a)
introduced two-step estimation procedure for the copula based models. Assume that there
are two return series {Xt, t = 1, ..., n} and {Yt, t = 1, ..., n}. Let the conditional distribu-
tion (Xt, Yt)

′|Ft−1 be parameterized as Ht(x, y; θ) = C(Ft(x; θ1), Gt(y; θ2);α), where Ft−1

denotes the information available at time t − 1, Ft is the conditional distribution function
of Xt, Gt is the conditional distribution function of Yt, C is the copula, α is the copula
parameters and θ = (θ′1, θ

′
2, α
′)′. Then conditional density of (Xt, Yt) is obtained by

ht(x, y; θ) = ft(x; θ1)gt(y; θ2)c(Ft(x; θ1), Gt(y; θ2);α),

where ft is the conditional density of Xt, gt is the conditional density of Yt and c is the
copula density. According to Patton (2006a), we estimate the parameters θ by maximizing
the log likelihood function

θ̂ = argmax
θ

[
n∑
t=1

log(ft(x; θ1)) + log(gt(y; θ2)) + log(c(Ft(x; θ1), Gt(y; θ2);α))

]
.

One may utilize the simultaneous estimating method for the parameters in marginal distri-
butions and copula parameter. However as mentioned in Chiou and Tsay (2008), in practice,
the number of parameters in objective function may be large and the dependence relation
of the copula may involve a convoluted expression of the parameters. In order to overcome
this difficulty, we adopt the two-step estimation procedure which is simpler and easier to
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implement. In the first step, we estimate the parameters in marginal distributions. See the
Section 4 for details. In the second step, we estimate the copula parameter based on the
estimated parameters in the first step, that is

α̂ = argmax
α

n∑
t=1

log(c(Ft(x; θ̂1), Gt(y; θ̂2);α)). (3.1)

Details are presented in Section 5. Patton (2006a) showed that the two-step estimator is
asymptotically normally distributed under some regularity conditions. Since the Kendall’s
tau and Spearman’s rho depend only on the copula parameters, we can analyze the depen-
dence between two returns with the estimated copula parameters.

4. Marginal models and parameter estimation

In this section, we employ the ARMA(p, q)-GARCH(1,1) models for the individual returns
of KOSPI and NYSE.

4.1. ARMA(p, q)-GARCH(r,s) model with Gaussian mixture innovations

For the individual returns rt, t = 1, ..., n, let us consider the ARMA(p, q)-GARCH(r,s)
model

rt = c0 +

p∑
i=1

cirt−i + εt +

q∑
j=1

djεt−j

εt = σtzt

σ2
t = ω +

s∑
i=1

aiε
2
t−i +

r∑
j=1

bjσ
2
t−j ,

where ci (i = 0, ..., p), dj (j = 1, ...., q) ∈ R, ω > 0, ai (i = 1, ..., s), bj (j = 1, ..., r) ≥
0, 1−

∑p
i=1 ciz

i 6= 0 and 1 +
∑q
j=1 djz

j 6= 0 for |z| ≤ 1. Further, we assume that
∑s
i=1 ai +∑r

j=1 bj < 1 for the second order stationary of GARCH model. Chiou and Tsay (2008)
also considered the ARMA-GARCH models with a constant conditional mean for marginal
returns. However, although their data shows leptokurtic property, they assumed that the
innovation zt is a sequence of independent and identically distributed random variables
with Gaussian distribution. From the past experience, it is well known that the Gaussian
assumption is not satisfied frequently, especially in the financial field. To cope with such
a defect, in this study we assume that zt is a sequence of independent and identically
distributed random variables with m-component Gaussian mixture, say NM(πk, µk, ζk, k =
1, 2, ...m), density defined as

ψ(y) =

m∑
k=1

πkφ(y;µk, ζk),

where φ(·;µk, ζk) is the Gaussian density with mean µk and standard deviation ζk,
∑m
k=1 πk =

1,
∑m
k=1 πkµk = 0 and

∑m
k=1 πk(µ2

k + ζ2
k) = 1. The last two assumptions imply that
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E(zt) = 0 and V ar(zt) = 1. In order to estimate the ARMA-GARCH model and mixture
parameters, we follow the estimation procedure described below. Throughout this study, we
choose r1 as the initial values for r0, .., r1−p, ε0, ..., ε1−max{q,s} and σ0, ...σ1−r.

1. Obtain the Gaussian QMLE for the parameters ci (i = 0, ..., p), dj (j = 1, ...., q), ω,
ai (i = 1, ..., s) and bj (j = 1, ..., r). Francq and Zakoian (2004) showed that the Gaussian
QMLE is consistent and asymptotically normally distributed under regularity conditions.

2. Obtain the ARMA-GARCH residuals based on the QMLE

z̃t =
ε̃t
σ̃t
, t = 1, ..., n,

where ε̃t and σ̃2
t , t = 1, ..., n are defined recursively by ε̃t = rt−ĉ0−

∑p
i=1 ĉirt−i−

∑q
j=1 d̂j ε̃t−j

and σ̃2
t = ω̂ +

∑s
i=1 âiε̃

2
t−i +

∑r
j=1 b̂j σ̃

2
t−j .

3. By using ARMA-GARCH residuals, mixture parameters are estimated by maximizing the
log likelihood function

1

n

n∑
t=1

log(ψ(z̃t)).

We use the EM algorithm to find the solutions. Given the current parameter η(l) = (π
(l)
k , µ

(l)
k ,

ζ
(l)
k ), the EM algorithm for the Gaussian mixture model interates as follows

π
(l+1)
k =

1

n

n∑
t=1

β(k|z̃t; η(l))

µ
(l+1)
k =

∑n
t=1 z̃tβ(k|z̃t; η(l))∑n
t=1 β(k|z̃t; η(l))

σ
2(l+1)
k =

∑n
t=1 z̃

2
t β(k|z̃t; η(l))∑n

t=1 β(k|z̃t; η(l))
−
(
µ

(l+1)
k

)2

,

where β(k|z̃t; η(l)) = π
(l)
k φ(z̃t;µ

(l)
k , ζ

(l)
k )/

∑m
j=1 π

(l)
j φ(z̃t;µ

(l)
j , ζ

(l)
j ), for k = 1, ....m. The quasi

clustering technique in Woodward et al. (1984) is employed for selecting an initial value.
Note that occasionally, the estimators obtained from EM algorithm may not satisfy the
assumptions imposed on the mixture parameters. Let, η̂em = (π̂emk , µ̂emk , ζ̂emk , k = 1, ...,m)′

denote the estimators from EM algorithm. According to Lee and Lee (2011), we can use a
modified version of η̂em to resolve this problem,

η̂∗ = (π̂∗k, µ̂
∗
k, ζ̂
∗
k , k = 1, ...,m)′ := (π̂emk ,

µ̂emk − µ̂
ζ̂

,
ζ̂emk
ζ̂
, k = 1, ...,m)′,

where µ̂ =
∑m
k=1 π̂

em
k µ̂emk and ζ̂2 =

∑m
k=1 π̂

em
k ((µ̂emk − µ̂)2 + (ζ̂emk )2). Lee and Lee (2011)

demonstrated that η̂em is a consistent estimator and so is the modified estimator η̂∗.

4. Using the ARMA-GARCH and mixture parameter estimators, conditional distribution
function of rt can be estimated (called Ft(·; θ̂1) and Gt(·; θ̂2) in Section 3) as the distribution

function of NM(π̂∗k, ĉ0 +
∑p
i=1 ĉirt−i +

∑q
j=1 d̂j ε̃t−j + σ̃tµ̂

∗
k, σ̃tζ̂

∗
k , k = 1, 2, ...m).
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4.2. Application to the KOSPI and NYSE

Figure 4.1 depicts the autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the KOSPI and NYSE. Since the ACF and PACF are modest in size except for
the PACF with lag 1 of NYSE, we choose an AR(1) model for the conditional mean of
ARMA-GARCH models for both returns. Table 4.1 shows the Gaussian QMLE for the
AR(1)-GARCH(1,1) model parameters. We perform the Jarque-Bera and Ljung-Box tests
for the diagnostics of fitted model based on the standardized residuals. Table 4.2 reports
the p-values of each tests. In Table 4.2, Q(h) and Q2(h) denote the Ljung-Box tests for
the standardized residuals and squared standardized residuals with lag h, respectively. From
the results of Jarque-Bera test, we can speculate that the Gaussian assumption on zt may
be inadequate for our data. The results of Ljung-Box tests inform that the standardized
residuals do not have autocorrelations and ARCH effects at the significance level 0.05. Thus,
both the conditional mean and variance equations are proper in describing the first two
moments of the data. In this study, we use the two component Gaussian mixture model.
The modified version of mixture parameter estimators, denoted by η̂∗ in Section 4.1, is
presented in Table 4.3. In Table 4.3, standard errors are obtained by bootstrap.

Remark 4.1 We remark that the conditional mean modeling with a constant and higher
orders has been examined. However, conditional mean modeling did not strongly affect the
results. Hence, we only consider the AR(1) model for KOSPI and NYSE returns.
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Figure 4.1 ACF and PACF of the KOSPI and NYSE
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Table 4.1 Gaussian QMLE for the AR(1)-GARCH(1,1) model parameters: The numbers in parentheses
are standard errors and the symbols ∗, ∗∗, ∗∗∗ indicates significance at the level 10%, 5%, 1%

ĉ0 ĉ1 ω̂ â b̂
KOSPI 0.058 (0.033)∗ -0.034 (0.026) 0.018 (0.009)∗∗ 0.067 (0.016)∗∗∗ 0.922 (0.017)∗∗∗

NYSE 0.087 (0.034)∗ -0.053 (0.027)∗∗ 0.031 (0.012)∗∗∗ 0.093 (0.024)∗∗∗ 0.890 (0.024)∗∗∗

Table 4.2 P-values for the Jarque-Bera and Ljung-Box tests

KOSPI NYSE
Jarque-Bera < 2.2 × 10−16 < 2.2 × 10−16

Q(10) 0.7452 0.9526
Q(20) 0.4580 0.994
Q(30) 0.4692 0.9625
Q2(10) 0.5643 0.0968
Q2(20) 0.5396 0.4568
Q2(30) 0.6738 0.8227

Table 4.3 Modified version of the Gaussian mixture parameter estimators: The numbers in parentheses
are standard errors

π̂∗
1 µ̂∗1 µ̂∗2 ζ̂∗1 ζ̂∗2

KOSPI 0.263 (0.032) -0.494 (0.068) 0.176 (0.017) 1.315 (0.032) 0.788 (0.016)
NYSE 0.454 (0.025) -0.206 (0.029) 0.172 (0.014) 1.295 (0.024) 0.610 (0.017)

5. Time-varying copula parameter estimation and dependence
measures

In this study, we follow the specifications of Chiou and Tsay (2008) for time-varying
copula parameters to reveal the dependence pattern between KOSPI and NYSE returns.
We consider four copulas in this paper. Chiou and Tsay (2008) selected the Plackett and
Frank copulas since they enjoy some nice properties. The density of two copulas are flexible
for the maginal processes and dependence between two marginal processes is represented by
a single parameter. Further, both copulas are comprehensive. A copula which interpolates
the positive dependence, negative dependence and independence by varying the parameter
is called comprehensive. We consider the Plackett and Frank copulas following Chiou and
Tasy (2008) and the most commonly used copulas, Guassian and Student’s t copulas in
addition. Guassian and Student’s t copulas are also comprehensive and Student’s t copula
can generate joint tail dependence.

Below, we provide the copula functions, density functions and related dependence measures
of four copulas.

1. Plackett copula

Plackett copula for α > 0, α 6= 1 is

C(u, v;α) =
1

2(α− 1)

[
1 + (α− 1)(u+ v)−

√
{1 + (α− 1)(u+ v)}2 − 4uvα(α− 1)

]
,

and for α = 1,

C(u, v; 1) = uv.
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It has the density of the form

c(u, v;α) =
α{1 + (u− 2uv + v)(α− 1)}

[{1 + (α− 1)(u+ v)}2 − 4uvα(α− 1)]
3/2

.

Plackett copula parameter α is related to the Spearman’s rho as

ρ =
α+ 1

α− 1
− 2α log(α)

(α− 1)2
for α 6= 1,

= 0 for α = 1.

2. Frank copula

Frank copula is

C(u, v;α) = − 1

α
log

[
1 +

(e−αu − 1)(e−αv − 1)

e−α − 1

]
,

where α 6= 0. The density function of the Frank copula is

c(u, v;α) =
−α(e−α − 1)e−α(u+v)

{(e−αu − 1)(e−αv − 1) + (e−α − 1)}2
.

Frank copula parameter α is related to the Spearman’s rho and Kendall’s tau as

ρ = 1− 12

α
[D1(α)−D2(α)],

τ = 1 +
4

α
[D1(α)− 1],

where Dk(x) denotes the “Debye” function

Dk(x) =
k

xk

∫ x

0

tk

et − 1
dt, k = 1, 2.

3. Gaussian copula

Let the correlation be α between two marginal preocesses. Then, Gaussian copula is

C(u, v;α) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− α2
exp

(
−s

2 − 2αst+ t2

2(1− α2)

)
dsdt,

where Φ denotes the univariate standard Gaussian distribution function and −1 < α < 1.
The density of the Gaussian copula is

c(u, v;α) =
1√

1− α2
exp

(
2αΦ−1(u)Φ−1(v)− α2(Φ−1(u)2 + Φ−1(v)2)

2(1− α2).

)
.

Gaussian copula parameter α is associated with the Spearman’s rho and Kendall’s tau as

ρ =
6

π
arcsin

(α
2

)
,

τ =
2

π
arcsin(α).
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4. Student’s t copula

Student’s t copula has two parameters, correlation α and degree of freedom ν. Then,
Student’s t copula is formulated by

C(u, v;α, ν) =

∫ T−1
ν (u)

−∞

∫ T−1
ν (v)

−∞

1

2π
√

1− α2

(
1 +

s2 − 2αst+ t2

ν(1− α2)

)−(ν+2)/2

dsdt,

where Tν denotes the univariate Student’s t distribution function with degree of freedom
ν > 0 and −1 < α < 1. The density of the Student’s t copula is

c(u, v;α, ν) =
1√

1− α2

Γ((v + 2)/2)Γ(ν/2)

Γ((ν + 1)/2)2

(1 + x2
u/ν)(ν+1)/2(1 + x2

v/ν)(ν+1)/2

{1 + (x2
u + x2

v − 2αxuxv)/ν(1− α2)}(ν+2)/2
,

where xu = T−1
ν (u) and xv = T−1

ν (v). Note that the Kendall’s tau is influenced only by α
such as

τ =
2

π
arcsin(α).

According to Chiou and Tsay (2008), to emphasize that the dependence may vary with
the volatility of marginal processes, we specify the time-varying copula parameter as

αt|Ft−1 = Λ

(
d1 + d2σ

KOSPI
t + d3σ

NY SE
t + d4

√
σKOSPIt σNY SEt

)
,

where σKOSPIt and σNY SEt are the volatilities of the KOSPI and NYSE, respectively. Note
that many specifications are available to model the copula parameter. See also the studies
introduced in Section 1. To ensure the constraints that imposed on α of four copulas are
satisfied, we adopt the function Λ distinctly as follows:

1. Plackett copula: Λ(x) = ex,
2. Frank copula: Λ(x) = x,
3. Normal and Student’s t copulas: Λ(x) = (1− e−x)/(1 + e−x).

Note that the above three expressions for Λ(x) have common characteristic that as x ap-
proaches ∞, −∞ and 0, corresponding copulas imply positive dependence, negative depen-
dence and independence, respectively. To obtain the estimators for d1, d2, d3 and d4, we
substitute α to αt in (3.1). Then we can estimate the time-varying copula parameters as

1. Plackett copula:

α̂t|Ft−1 = exp(0.687 + 1.812σKOSPIt + 0.776σNY SEt − 2.432
√
σKOSPIt σNY SEt ),

2. Frank copula:

α̂t|Ft−1 = 1.320 + 4.173σKOSPIt + 1.814σNY SEt − 5.619
√
σKOSPIt σNY SEt ,

3. Gaussian copula:

α̂t|Ft−1 =
1− exp(−0.462− 1.098σKOSPIt − 0.378σNY SEt + 1.334

√
σKOSPIt σNY SEt )

1 + exp(−0.462− 1.098σKOSPIt − 0.378σNY SEt + 1.334
√
σKOSPIt σNY SEt )

,
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4. Student’s t copula:

α̂t|Ft−1 =
1− exp(−0.452− 1.179σKOSPIt − 0.413σNY SEt + 1.450

√
σKOSPIt σNY SEt )

1 + exp(−0.452− 1.179σKOSPIt − 0.413σNY SEt + 1.450
√
σKOSPIt σNY SEt )

.

In Figures 5.1, 5.2 and 5.3, the dashed horizontal lines represent the Spearman’s rho and
Kendall’s tau when the copula parameters are time-invariant. We can easily see that we may
lose a great deal of informations about the dependence changes when we assume that the
copula parameters are time-invariant. Figure 5.1 compares Spearman’s rho and Kendall’s
tau under the Frank and Gaussaian copulas based on the time-varying copula parameters.
Although the two dependence measures are different in size, but they show similar patterns.
Figure 5.2 illustrates Spearman’s rho under the Plackett, Frank and Gaussian copulas and
Figure 5.3 depicts Kendall’s tau under the Frank, Gaussian and Student’s t copulas based
on the time-varying copula parameters. In Figures 5.2 and 5.3, the dependence patterns
are almost same among the copulas which indicates that the dependence measures are not
sensitive to the choice of copulas in our data. Dependence is the strongest in September
28, 2011 and weakest in December 15, 2008. Note that as anticipated from Figure 2.1,
dependence measures show high values in the latter half of 2011 and low values in the
middle of 2010. Actually in the latter half of 2011, the world market indices had been
faltered together due to the economic crisis originated from the Europe and U.S. These
facts support that the two-step estimation procedure with time-varying copula parameter
reflects well the actual dependence structure of data. Therefore, we think it would be a
promising tool to identify the dependence structure along with the time.
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Figure 5.1 Spearman’s rho and Kendall’s tau between KOSPI and NYSE returns under the Frank and
Gaussian copulas based on the time-varying copula parameters: Dashed lines represent the Spearman’s rho

and Kendall’s tau when the copula parameters are time-invariant.
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Figure 5.2 Spearman’s rho between KOSPI and NYSE returns under the Plackett, Frank and Gaussian
copulas based on the time-varying copula parameters: Dashed lines represent the Spearman’s rho when the

copula parameters are time-invariant.
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Figure 5.3 Kendall’s tau between KOSPI and NYSE returns under the Frank, Gaussian and Student’s t
copulas based on the time-varying copula parameters: Dashed lines represent the Kendall’s tau when the

copula parameters are time-invariant.
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6. Conclusion

In this paper, we analyzed the dependence structure between two stock market indices
KOSPI and NYSE by using the Patton’s (2006a) two-step estimation procedure for cop-
ula based models. In the first step, AR(1)-GARCH(1,1) with Gaussian mixture innovation
models were employed for marginal returns. We adopted two component Gaussian mix-
ture distributions, since it conventionally performs better than Gaussian ARMA-GARCH
models when data shows leptokurtic property. Selection of mixture order can be made by
comparing the AIC and BIC. Further, we refer to Lee and Lee (2008) for the robust estima-
tion of mixture order. Diagnostic results validated the selected models. In the second step,
we considered four copulas with time-varying copula parameter which vary with marginal
volatilities. Time-varying copula parameter can be specified diversely, for example, Patton
(2006a) used the conditional copula parameter in a manner similar to that used by a GARCH
model to capture time-varying volatility. Dependence was measured by Kendall’s tau and
Spearman’s rho. As a result, we found that the two-step estimation procedure with time-
varying copula parameter is very valuable when we want to know the dependence pattern
over the time.
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