DOI QR코드

DOI QR Code

저발열량 천연가스가 엔진 성능 및 배기특성에 미치는 영향

Effect of Low Calorific Natural Gas on Performance and Emission Characteristics of Engine

  • Lee, Sungwon (Korea Institute of Machinery and Materials) ;
  • Lim, Gihun (Dept. of Environment & Energy Mechanical Engineering, Univ. of Science and Technology) ;
  • Park, Cheolwoong (Korea Institute of Machinery and Materials) ;
  • Choi, Young (Korea Institute of Machinery and Materials) ;
  • Kim, Changgi (Korea Institute of Machinery and Materials)
  • 투고 : 2013.05.23
  • 심사 : 2013.10.05
  • 발행 : 2013.12.01

초록

본 연구에서는 저발열량 천연가스가 현재 상용되고 있는 대형 천연가스 엔진에 미치는 영향을 살펴보기 위하여 3종류의 연료를 적용하였다. 전부하 운전조건과 WHSC 및 WHTC 모드 테스트를 수행하여 엔진성능 및 배기특성을 분석하였다. 실험결과 전부하 실험에서 토크성능이 $9,800kcal/Nm^3$의 발열량을 갖는 저발열량 가스의 경우 현행 천연가스($10,400kcal/Nm^3$)를 사용한 결과에 비해 4.4% 감소하였다. 저발열량 연료를 사용하였을 때 일산화탄소, 이산화탄소 및 질소산화물의 배출량은 감소하였지만, 탄화수소의 배출량은 증가하였다. WHSC 및 WHTC 실험결과 저발열량 연료에서 열효율이 증가하였으며 배기특성은 전부하 실험결과와 유사한 경향을 보였다. 저발열량 천연가스를 사용할 경우 제원상의 출력을 만족하기 어렵고, 탄화수소의 배출이 증가하는 문제점을 확인하였다.

In this, three types of natural gas were employed to investigate the effect of low-calorific natural gas on the performance of and emissions from a heavy-duty CNG engine. The performance and emission characteristics were analyzed by conducting a full-load test, WHSC mode test, and WHTC mode test. The results showed that the torque of low-calorific natural gas with $9,800kcal/Nm^3$ of higher heating value decreased by 4.4 compared to that of the current natural gas with $10,400kcal/Nm^3$ of heating value. With low-calorific fuels, CO, $CO_2$, and $NO_x$ emissions decreased. However, THC emissions increased. According to the WHSC and WHTC mode test results, the thermal efficiency increased and the emission characteristics showed a similar trend to the full-load test results. Low-calorific natural gases cause a decrease in torque at full-load operation conditions and an increase in hydrocarbon emissions.

키워드

참고문헌

  1. Jahirul, M. I., Masjuck, H. H., Saidur, R., Kalam, M. A., Jayed, M. H. and Wazed, M. A., 2010, "Comparative Engine Performance and Emission Analysis of CNG and Gasoline in a Retrofitted Car Engine," Applied Thermal Engineering, Vol. 30, No. 14-15, pp.2219-2225. https://doi.org/10.1016/j.applthermaleng.2010.05.037
  2. Romm, J., 2006, "The Car and Fuel of the Future," Energy Policy, Vol. 34, pp. 2609-2614. https://doi.org/10.1016/j.enpol.2005.06.025
  3. Kim, C. U., Kim, C. G., Kim, S. S., Pang, H. S., Han, J. O. and Cho, Y. S., 1996, "A Study on the Performance Improvement for a Natural Gas Engine under Lean Burn & WOT Condition," Transaction KSAE, Vol. 4, No. 6, pp. 11-17.
  4. Lee, Y. J. and Kim, G. C., 1999, "Effect of Gas Compositions on Fuel Economy and Exhaust Emissions of Natural Gas Vehicles," Transaction KSAE, Vol. 7, No. 8, pp. 123-131.
  5. Feist, M. D., 2010, "The Effect of fuel Composition on Performance and Emissions of a Variety of Natural Gas Engine," SAE Int. j. Fuels Lubr., Vol. 3, No. 2, pp. 100-117 https://doi.org/10.4271/2010-01-1476
  6. Min, B. H., Bang, K. H., Kim, H. Y., Chung, J. T. and Park S. S., 1998, "Effects of Gas Composition on the Performance and Hydrocarbon Emissions for CNG Engines," SAE Technical Paper 981918.
  7. Ha, Y. C., Lee, S. M., Kim, B. G. and Lee, C. J., 2011, "Performance and Emission Characteristics of a CNG Engine Under Different Natural Gas Compositions," Trans. Korean Soc. Mech. Eng. B, Vol. 37 No. 7, pp. 749-755. https://doi.org/10.3795/KSME-B.2011.35.7.749
  8. Heywood, J. B., 1988, Internal Combustion Engine Fundamentals, MCGraw-Hill,

피인용 문헌

  1. Performance and Emission Characteristics of GHP Engine at Different Natural Gas Heating Value vol.19, pp.1, 2015, https://doi.org/10.7842/kigas.2015.19.1.1
  2. Numerical Analysis and Demonstration Test on the Performance of a Static Mixer for mixing Biogas and Town Gas for the 5MW Biogas Turbine vol.24, pp.1, 2015, https://doi.org/10.5855/ENERGY.2015.24.1.051