DOI QR코드

DOI QR Code

Experimental and Numerical Study on the Capillary Performance of Non-Homogeneous Micro-Post Arrays

비 균일적 마이크로 원기둥 배열을 이용한 고성능 냉각 표면

  • Byon, Chan (School of Mechanical Engineering, Yeungnam Univ.) ;
  • Kim, Sung Jin (School of Mechanical, Aerospace and Systems Engineering, KAIST)
  • 변찬 (영남대학교 기계공학부) ;
  • 김성진 (KAIST 기계공학과)
  • Received : 2013.05.06
  • Accepted : 2013.09.16
  • Published : 2013.12.01

Abstract

In this article, an advanced cooling surface based on micro-post arrays with non-homogeneous configurations is investigated and compared with conventional micro-post arrays with homogeneous configuration. The capillary performance of micro-post arrays are characterized using the capillary rate of rise experiments and numerical simulations which take into account the meniscus curvature. The experimental and numerical results show that that the capillary performance of the micro-post wick can be significantly enhanced, compared with the homogeneous type wick, by employing non-homogeneous configurations. The capillary performance is shown to be primarily a function of the solid fraction and increases linearly with decreasing solid fraction, regardless of the wick configuration, when the solid fraction is larger than 0.25. However, the capillary performance is found to be significantly reduced when the solid fraction falls below approximately 0.25.

본 논문은 비 균일적 마이크로 원기둥 배열을 이용한 고성능 냉각 표면에 대해 다루고 있다. 비균일적 원기둥 배열은 원기둥간의 거리 및 배열 규칙이 균일한 종전의 균일 배열과 달리, 두 개의 특성 공극 길이를 갖기 때문에 구조물의 모세관 능력을 획기적으로 향상시킬 수 있다. 본 연구에서는 비 균일적 마이크로 원기둥 배열을 제작하고, 모세관 상승률 실험을 통하여 모세관 능력을 측정하였다. 그리고 수치해석을 통하여 실험 결과를 검증하였고, 비 균일적 원기둥 배열의 모세관 능력 향상 원인에 대해 검토하였다. 실험 및 수치해석 결과, 마이크로 원기둥 배열의 모세관 능력은 배열의 고체 분율에 대한 일의적 함수로 주어지며, 고체 분율이 감소할수록 증가하는 것으로 나타났다. 하지만 고체 분율이 약 0.25 이하로 줄어들면 모세관 능력은 급격히 감소한다.

Keywords

References

  1. Do, K. H, Kim T. H. and Kim S. J., 2010, "Analytical and Experimental Investigations on Fluid Flow and Thermal Characteristics of a Plate-fin Heat Sink subject to a Uniformly Impinging Jet," International Journal of Heat and Mass Transfer, Vol. 53, pp. 2318- 2323. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.049
  2. Byon, C. and Kim, S. J., 2012, "Capillary Performance of Bi-porous Sintered Metal Wicks," International Journal of Heat and Mass Transfer, Vol. 55, pp. 4096-4103. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.051
  3. Sobhan, C. B., Rag, R. L. and Peterson, G. P., 2007, "A Review and Comparative Study of the Investigations on Micro Heat Pipes," International Journal of Energy Research, Vol. 31, pp. 664-688. https://doi.org/10.1002/er.1285
  4. Cao, X. L., Cheng, P. and Zhao, T. S., 2002, "Experimental Study of Evaporative Heat Transfer in Sintered Copper Bidispersed Wick Structures," Journal of Thermophysics and Heat Transfer, Vol. 16, pp. 547-552. https://doi.org/10.2514/2.6730
  5. Lips, S., Lefevre, F. and Bonjour, J., 2010, "Thermohydraulic Study of a Flat Plate Heat Pipe by Means of Confocal Microscopy: Application to a 2D Capillary Structure," Journal of Heat Transfer, Vol. 132, pp. 112901. https://doi.org/10.1115/1.4001930
  6. Nam, Y., Sharratt, S., Byon, C., Kim, S. J. and Ju, Y. S., 2010, "Fabrication and Characterization of the Capillary Performance of Superhydrophilic Cu Micropost Arrays," Journal of Microelectromechanical Systems, Vol. 19, pp. 581-588. https://doi.org/10.1109/JMEMS.2010.2043922
  7. Lefevre, F. and Lallemand, M., 2006, "Coupled Thermal and Hydrodynamic Models of Flat Micro Heat Pipes for the Cooling of Multiple Electronic Components," International Journal of Heat and Mass Transfer, Vol. 49, pp. 1375-1383. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.001
  8. Byon, C. and Kim, S. J., 2011, "The Effect of Meniscus on the Permeability of Micro-post Wicks," Journal of Micromechanics and Microengineering Vol. 21, pp. 115011. https://doi.org/10.1088/0960-1317/21/11/115011
  9. Faghri, A., 1995, Heat Pipe Science and Technology, Taylor & Francis, Washington.
  10. Holley, B. and Faghri, A., 2006, "Permeability and Effective Pore Radius Measurements for Heat Pipe and Fuel Cell Applications," Applied Thermal Engineering, Vol. 26, pp. 448-462. https://doi.org/10.1016/j.applthermaleng.2005.05.023
  11. Fries, N., Odic, K., Conrath, M. and Dreyer, M., 2008, "The Effect of Evaporation on the Wicking of Liquids into a Metallic Weave," Journal of Colloid Interface Science Vol. 321, pp. 118-129. https://doi.org/10.1016/j.jcis.2008.01.019
  12. Washburn, E. W., 1921, "The Dynamics of Capillary Flow," Physical Review, Vol. 17, pp. 273-283. https://doi.org/10.1103/PhysRev.17.273
  13. Chi, S. W., 1976, Heat Pipe Theory and Practice, Hemisphere, Washington.
  14. Xiao, R., Enright R. and Wang, E. N., 2010, "Prediction and Optimization of Liquid Propagation in Micropillar Arrays," Langmuir Vol. 26, pp. 15070- 15075. https://doi.org/10.1021/la102645u