DOI QR코드

DOI QR Code

Adaptive Load Balancing Algorithm and Its Performance Analysis Based on System-Level Simulations in Indoor Mobile Communication System

옥내용 모바일 통신 시스템을 위한 적응적 Load-Balancing 알고리즘 제안 및 시스템 레벨 시뮬레이션 기반 성능 분석

  • Lee, Woongsup (Institute for Digital Communications, University Erlangen-Nurnberg) ;
  • Lee, Howon (Dept. of Electrical, Electronic and Control Engineering, Hankyong National University)
  • Received : 2013.07.05
  • Accepted : 2013.09.02
  • Published : 2013.11.30

Abstract

Recently, various solutions to support explosively growing mobile data traffic have attracted intensive attentions. However, the range of spectrum which can be exploited for mobile communications is very limited. Small cell networks are actively investigated because they can efficiently offload mobile data traffic from macro cells without using additional spectrum. In this paper, we developed a system-level simulator considering small cell networks in the indoor environments. We compare the performance of outage probability when a load-balancing algorithm is utilized or not. We can reduce the outage probability of congested BS with the load-balancing algorithm. In addition, overall outage probability of whole wireless systems can be reduced by using the proposed load-balancing algorithm.

최근 옥외용 이동통신시스템과 동일 주파수를 사용하면서 추가적으로 용량을 확보할 수 있는 옥내용 모바일 통신 시스템을 위한 초소형 기지국에 대한 연구 및 개발이 활발히 진행되고 있다. 본 연구에서는 옥내용 모바일 통신 시스템에서 초소형 기지국의 특성을 고려한 시스템 레벨 시뮬레이터를 개발하였고 초소형 기지국 환경에서 혼잡한(Congested) 기지국의 아웃티지 확률(Outage Probability)을 줄이는 적응적 Load-Balancing 방안을 제안하였다. 본 시뮬레이터에서는 초소형 기지국 특성을 고려한 링크 레벨 시뮬레이션 결과를 반영하였으며, 본 시뮬레이터를 이용하여 옥내용 모바일 통신 시스템에서 Load-Balancing 방안을 적용하였을 때와 적용하지 않았을 때의 아웃티지 확률을 비교해 보았다. 제안한 Load-Balancing 방안의 사용을 통해 혼잡한 기지국의 아웃티지 확률을 줄이고 전체 시스템의 성능을 향상시킬 수 있음을 보였다.

Keywords

References

  1. Cisco, "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2009-2014," Feb. 2010.
  2. J. Huh, "An era of mobile-data explosion, how to prepare?," KT Digieco Focus, pp. 1-18, Jul. 2011.
  3. P. J. Song and S. H. Park, "Trends of wireless access technologies towards future IMT," ETRI Electron. Telecommun. Trends, vol. 27, no. 5, pp. 85-94, Oct. 2012.
  4. 3GPP, Release 12 and ongoing, workshop, Slovenia, 2012.
  5. C. B. Dietrich Jr., K. Dietze et al., "Spatial, polarization, and pattern diversity for wireless handheld terminals," IEEE Trans. Antennas Propag., vol. 49, no. 9, pp. 1271-1281, 2001. https://doi.org/10.1109/8.947018
  6. W. Lee, and D. Cho, "Adaptive interference estimation for directional transmission," in Proc. IEEE Consumer Communications and Networking Conference 2012, pp.350-351, Jan. 2012.
  7. 3GPP TS 36.104, "Evolved Universal Terrestrial Radio Access (LTE): Base Station (BS) Radio Transmission and Reception," v. 8.2.0, May 2008.
  8. Report ITU-R M.2135-1, Guidelines for evaluation of radio interface technologies for IMT-Advanced, Dec. 2009.
  9. K. Valkealahti, A. Hoglund, J. Parkkinen, and A. Hamalainen, "WCDMA common pilot power control for load and coverage balancing," in Proc. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2002, pp. 1412-1416, Sep. 2002.
  10. M. Simsek et al, "An LTE-femtocell dynamic system level simulator," in Proc. IEEE Smart Antennas (WSA) 2010, pp. 66-71, Feb. 2010.
  11. K. C. Beh, A. Doufexi and S. Armour, "Performance evaluation of hybrid ARQ schemes of 3GPP LTE OFDMA system," in Proc. Personal, Indoor and Mobile Radio Communications 2007, pp. 1-5, Sep. 2007.
  12. A. Goldsmith, Wireless Communications. Cambridge; Cambridge University Press, 2005.
  13. M. Haenggi "On distances in uniformly random networks," IEEE Trans. Info. Theory, vol. 51, no. 10, pp. 3584-3586, Oct. 2005. https://doi.org/10.1109/TIT.2005.855610