DOI QR코드

DOI QR Code

MNG 메타 인공 물질을 이용한 T-SRR 및 저손실 대역통과 필터의 설계

Design of the T-SRR and Low Loss Band-pass Filter Using MNG Metamaterial

  • 투고 : 2013.07.04
  • 심사 : 2013.09.17
  • 발행 : 2013.11.30

초록

본 논문은 MNG (mu-Negative) 메타 인공 물질을 이용한 T-SRR (Triple Split Ring Resonator)을 제안하여 3단의 저손실 대역통과 필터를 응용 설계를 하였다. 제안된 대역통과 필터는 낮은 유전율을 가진 기판 위에 T-SRR의 크기를 자유롭게 조절할 수 있고 ${\lambda}/4$ 전송선로를 적용하여 저손실 대역통과필터로 응용설계함. 또한 군사용 위성통신대역의 I-밴드 10 GHz 중심 주파수에서, 필터 내의 T-SRR의 QL값은 184이며, 필터의 대역폭은 10 % 일 때, 삽입손실 및 반사손실은 각각 1.44 dB 와 17.3 dB의 값을 얻었다. 향후 IPD(Integrated Passive Device)등으로 재설계가 가능할 것임.

In this paper, the T-SRR (Triple Split Ring Resonator) using MNG (mu-Negative) meta-material adapted in a low-loss bandpass filter with 3-stages is suggested. The size of the T-SRR in the proposed bandpass filter with low dielectric constant PCB can be easily controlled. And the ${\lambda}/4$ transmission line theory is applied. The proposed T-SRR and filter have the center frequency of 10 GHz with QL value of 184 for military-satellite communication system in I band. The experimental results of the filter show that the insertion and return losses are 1.44 dB and 17.3 dB with bandwidth of 10 %, respectively. The proposed filter will be redesigned by IPD material etc. should be placed here. These instructions give you guidelines for preparing papers for JICCE.

키워드

참고문헌

  1. J. Risko, J. Thomas, H. J. Prager, and K. K. N. Chang, "I Band (8-10 GHz) Trapatt-diode Sources," Electronics Lett., vol. 9, no. 24, pp. 572-573, Nov. 1973. https://doi.org/10.1049/el:19730422
  2. J. H. Choi, M. H. Chen, and A. Mortazawi, "An X-band Low Phase Noise Oscillator Employing a Four-pole Elliptic-Response Microstrip Bandpass Filter," IEEE Int. Microwave Symp., pp. 1529-1532, Jun. 2007.
  3. H. K. Pang, K. M. Ho, K. W. Tam, and R. P. Martin, "A Compact Microstrip λ/4-SIR Interdigital Bandpass Filter with Extended Stopband," IEEE MTT-S Int. Micorwave Symp. Dig., vol. 3, pp. 1621-1624, June 2004.
  4. H. J. Lee, H. S. Lee, K. H. Yoo, and J. G. Yook, "On the Possibility of Biosensors Based on Split Ring Resonators," Proc. European Microwave Conf., pp. 1222-1225, Oct. 2008.
  5. Z. Chen, W. Hong, J. Chen, and J. Zhou, "Design of High-Q Tunable SIW Resonator and Its Application to Low Phase Noise VCO," IEEE Microwave and Wireless Comp. Letts., vol. 23, no. 1, pp. 43-45, Jan. 2013. https://doi.org/10.1109/LMWC.2012.2234088
  6. C. Caloz and T. Itoh, Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2006.
  7. B. Dong, Q. Feng, and S. Yang, "Research and Design of X-band SIR Microstrip Filters," Proc. Int. Conf. E-Business and Inform. System Security, pp. 1-4, June 2009.
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theory Tech, vol. 47, no. 11, pp. 2075-2084, Nov. 1999. https://doi.org/10.1109/22.798002
  9. S. Maslovski, P. Ikonen, I. Kolmakov, and S. Tretyakov, "Artificial Magnetic Materials Based on the New Mabnetic Particle:Matasolenoid," Progress in Electromagnetics Research, vol. 54, pp. 61-81, 2005. https://doi.org/10.2528/PIER04101101
  10. M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Jundogdu, E. N. Economou, and C. M. Soukoulis, "Left-handed Metamaterials : Detailed Numerical Studies of the Transmission Properties," J. Optics A: and Applied Optics, pp. 12-22, June 2005.
  11. J. Choi and C. Seo, "Microstrip Square Open-Loop Multiple Split-Ring Resonator for Low-Phase-Noise VCO," IEEE Trans. on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3245-3252, Dec. 2008. https://doi.org/10.1109/TMTT.2008.2007363
  12. G. Lubkowski, R. Schuhmann, and T. Weiland, "Extraction of Effective Metamaterial Parameters by Parameter Fitting of Dispersive Models," Microwave and Optical Technol. Lett., vol. 49, no. 2, pp. 285-288, Feb. 2007. https://doi.org/10.1002/mop.22105
  13. A. P. S. Khanna and Y. Garault, "Determination of Loaded, Unloaded and External Quality Factors of a Dielectric Resonator Coupled to a Microstrip Line," IEEE Trans. Microwave Theory Technology, vol. MTT-31, pp. 261-264, Mar. 1983.
  14. D. M. Pozar, Microwave Engineering 3rd, John Wiley & Sons, 2005.
  15. J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2001.
  16. X. Zou, C. M. Tong, D. W. Yi, "Design of an X-band Symmetrical Window Bandpass Filter Based on Substrate Integrated Waveguide," Conf. on Cross Strait Quad- Regional Radio Sci. and Wireless Tech., pp. 571-574, Jul. 2011.
  17. J. J. Shi, H. S. Chen, X. C. Wu, A Design of Ku-band Slow-wave Bandpass Filter," Int. conf. on Microwave and Millimeterwave Tech., pp.2063-2066, May 2010.
  18. Y. Li, L. Hu, J. Chen, and Y. Fei, "A Ku-band Hairpin Filter Based on LTCC Technology," Conf. on Microwave Joint China-Japan (CJMW), pp. 478-480, Sep. 2008.
  19. S. S. Sabri, B. H. Ahmad, and A. R. Othman, "A review of Substrate Integrated Waveguide (SIW) Bandpass Filter Based on Different Method and Design," Asia-Pacific Conf. on Applied Electromagnetics, pp. 210-215, Dec. 2012.