초록
최근 SNS(Social Network Service)의 사용이 급격히 증가함에 따라 추천 기법에 대한 연구가 활발히 진행되고 있다. 추천 기법은 사용자들이 좋아하거나 필요할만한 다양한 서비스들을 실시간으로 제공하는 기법이다. 그 중 그룹 추천은 사용자의 성향 정보를 기반으로 적합한 그룹을 제공해 주는 기법이다. 본 논문에서는 소셜 네트워크 환경에서 사용자 프로필 및 협업 필터링을 이용한 그룹 추천 기법을 제안한다. 제안하는 기법은 사용자의 최근 그룹 활동 정보를 수집하여 프로필 정보를 갱신하기 때문에 기존의 정적프로필 기반의 그룹 추천 기법의 최근 사용자의 성향을 고려하지 못하는 문제점을 해결한다. 또한, 협업 필터링을 통해 그룹 내 자신의 성향과 비슷한 사용자들의 프로필 데이터를 활용하여 그룹을 추천함으로써 사용자에게 좀 더 다양한 그룹을 제공한다. 성능 평가 결과 제안하는 기법이 기존 기법에 비해 사용자의 변화하는 성향이 충분히 반영된 다양한 그룹 추천이 이루어지는 것을 확인 할 수 있었다.
Recently, as SNS services have been increased, studies on recommendation schemes have been actively done. Recommendation scheme provides various favorable or needed services with users on real time. Group recommendation provides users with suitable groups based on their preference. In this paper, we propose a new group recommendation scheme considering user profiles and collaborative filtering in social networks. The proposed scheme can solve the problems of the static profile based group recommendation scheme because it collects the recent group activities and updates user profiles. It also recommends the more various groups by reflecting the similar tendencies of other users within a group through collaborative filtering. Our experimental results show that the proposed scheme recommends various groups that significantly considers the user's changing preferences compared to the existing scheme.