DOI QR코드

DOI QR Code

도시하수에서 생물학적 퍼클로레이트의 환원

Biological Perchlorate Reduction in Municipal Sewage

  • 최혁순 (원광대학교 토목환경공학과)
  • Choi, Hyeoksun (Department of Civil and Environmental Engineering, Wonkwang University)
  • 투고 : 2013.08.20
  • 심사 : 2013.09.25
  • 발행 : 2013.09.30

초록

본 연구는 도시하수에서 퍼클로레이트 분해의 잠재성을 알아보기 위해 수행되었다. 3 L 생하수를 포함하는 플라스크를 이용한 실험이 수행되었다. 하수에 일정농도의 퍼클로레이트와 다양한 첨가물이 혼합되었다. 하수에서 퍼클로레이트의 제거가 일어났으나, 교반 72시간 동안 0에서 72%의 매우 다양한 제거율을 보였다. 퍼클로레이트로 순응된 미생물의 미량(167 mg/L SS) 주입만으로도 퍼클로레이트 분해 지체시간은 현저하게 감소되었으며 하수에서 퍼클로레이트가 완전히 제거되었다. 용존산소농도가 2 mg/L 이상 그리고 염분농도가 비교적 높은(전기전도도 14 mS; TDS 8 g/L) 조건의 하수/brine 혼합수에서 퍼클로레이트 제거는 방해를 받았다. 퍼클로레이트와 질산염이 공존하는 하수/brine 혼합실험에서 퍼클로레이트 환원에 비해 질산염 환원이 우선적으로 진행되었으며, 초기 질산성 질소의 약 66%에 해당되는 많은 양의 아질산염이 축적되었다.

This research was done to evaluate the potential for destruction of perchlorate in municipal sewage. Laboratory experiments were conducted in flasks containing 3 liters of raw sewage. Sewage was mixed with defined amount of perchlorate and various additives. Perchlorate reduction in sewage did occur, but was quite variable, ranging from 0 to 72% over 72 hour. Addition of even a small amount of perchlorate acclimated biomass (167 mg/L SS) significantly reduced the lag and resulted in complete perchlorate removal. Perchlorate reduction in sewage-brine mixtures was inhibited when the dissolved oxygen level was greater than 2 mg/L, and when the mixture salinity was relatively high (conductivity = 14 mS with equivalent TDS = 8 g/L). When nitrate ($NO_3{^-}$) was present with perchlorate in the laboratory flask tests of sewage-brine mixtures, nitrate reduction proceeded first. A significant amount of nitrite ($NO_2{^-}$) accumulated in the sewage-brine mixtures, accounting for about 66% of initial nitrate nitrogen ($NO_3$-N).

키워드

참고문헌

  1. Gullick, R. W., Lechevallier, M. W. and Barhorst, T., "Occurrence of perchlorate in drinking waster sources," J. Am. Water Works Assoc., 93(1), 66-77(2001).
  2. Urbansky, E. T., "Perchlorate chemistry: implications for analysis and remediation," Biorem. J., 2(2), 81-95(1998). https://doi.org/10.1080/10889869891214231
  3. Urbansky, E. T. and Schock, M. R., "Issues in managing the risks associated with perchlorate in drinking water," J. Environ. Manage., 56(2), 79-95(1999). https://doi.org/10.1006/jema.1999.0274
  4. U.S. Environmental Protection Agency, "Perchlorate treatment technology update," EPA 542-R-05-015(2012).
  5. Attaway, H. and Smith, M., "Reduction of perchlorate by an anaerobic enrichment culture," J. Ind. Microbiol., 12(6), 408-412(1993). https://doi.org/10.1007/BF01569673
  6. Rikken, G. G., Kroon, A. G. M., van Ginkel, C. G., "Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation," Appl. Microbiol. Biotechnol., 45(3), 420-426(1996). https://doi.org/10.1007/s002530050707
  7. Logan, B. E., "A review of chlorate- and perchlroate-respiring microorganisms," Biorem. J., 2(2), 69-79(1998). https://doi.org/10.1080/10889869891214222
  8. Coates, J. D., Michaelidou, U., Bruce, R. A., O'connor, S. M., Crespi, J. N. and Achenbach, L. A., "Ubiquity and diversity of dissimilatory (per)chlorate reducing bacteria," Appl. Environ. Microbiol., 65(12), 5234-5241(1999)
  9. Wu, J., Unz, R. F., Zhang, H. and Logan, B. E., "Presistence of perchlorate and the relative numbers of perchlorate- and chlorate-respiring microorganismss in natural water, soils, and wastewater," Biorem. J., 5(2), 69-79(2001).
  10. Choi, H. and Silverstein, J., "Inhibition of perchlorate reduction by nitrate in a fixed biofilm reactor," J. Hazard. Mater., 159(2-3), 440-445(2008) https://doi.org/10.1016/j.jhazmat.2008.02.038
  11. Ginestet, P., Audic, J., Urbain, V. and Block, J., "Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide," Appl. Environ. Microbiol., 64(6), 2266-2268(1998).
  12. Johnsen, A. R., Bendixen, K. and Karlson, U., "Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1," Appl. Environ. Microbiol., 68(6), 2683-2689(2002). https://doi.org/10.1128/AEM.68.6.2683-2689.2002
  13. Cang, Y., Roberts, D. J. and Clifford, D. A., "Development of cultures capable of reducing perchlorate and nitrate in high salt solution," Water Res., 38(14-15), 3322-3330(2004). https://doi.org/10.1016/j.watres.2004.04.020
  14. Herman, D. C. and Frankenberger, J. W. T., "Microbial-mediated reduction of perchlorate in groundwater," J. Environ. Qual., 27(4), 750-754(1998).
  15. Oh, J. and Silverstein, J., "Oxygen inhibition of activated sludge denitrification," Water Res., 33(8), 1925-1937(1999). https://doi.org/10.1016/S0043-1354(98)00365-0
  16. Oh, J. and Silverstein, J., "Acetate limitation and nitrite accumulation during denitrification," J. Environ. Eng., 125(3), 234-242(1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:3(234)