DOI QR코드

DOI QR Code

알칼리도 제어에 의한 SBR 반응조에서의 부분아질산화

Partial Nitritation in an SBR Reactor by Alkalinity Control

  • 이창규 (한국건설기술연구원 수자원.환경연구본부 환경연구실)
  • Lee, Chang-Kyu (Construction Environmental Research Division, Water Resources & Environment Research Department, Korea Institute of Construction Technology)
  • 투고 : 2013.04.11
  • 심사 : 2013.04.26
  • 발행 : 2013.04.30

초록

혐기성 암모늄 산화공정 전처리로써 적절한 $NO_2{^-}-N/NH_4{^+}-N$ 반응비율에 맞는 유출수를 생성하기 위한 연구실 규모의 연속 회분식 반응기 시스템을 적용하였다. 부분아질산화 적용에 있어서 운전인자들을 이용하여 AOB를 활성화하고, 동시에 NOB를 억제하는 다양한 전략이 있다. 하지만 적용된 인자들은 명확히 정의되지 않고 아질산 축적에 있어서 극복할 점이 있다. 본 연구의 목적은 부분아질산화의 주 인자를 조사하여 안정적인 공정을 구축하는데 있다. 부분아질산화 시스템을 구축하기 위하여 우세적인 인자인 온도, 중탄산알칼리도, pH를 평가하고자 한다. 실험의 결과로써 알맞은 알칼리도 비가 $35^{\circ}C$와 상온 두가지 온도범위에 안정적인 50% 부분아질산화가 이루어졌다. 이는 질산화시 필요한 알칼리도를 50% 아질산화에 맞추어 주입하여 질산화과정을 억제하는 것이다. 알칼리도 비는 pH 조절없이 50% 부분아질산화의 전략으로 제안한다. 유출수의 $NO_2{^-}-N/NH_4{^+}-N$ 비가 거의 100%에 다다랐을 때 중탄산알칼리도는 각각 6.8, 6.7이 되었다. PCR-DGGE의 미생물 분석 결과 암모늄산화균이 지배적인 질산화균임을 알 수 있었으며 NOB는 억제되어 활성을 잃은 것으로 사료된다.

In this study, major parameter of partial nitritation was investigated for the stable operation. In order to establish partial nitritation system, prevailing parameters such as temperature, BA (bicarbonate alkalinity) and pH were evaluated. As a result, it is inferred that appropriate bicarbonate alkalinity ratio (mg $NaHCO_3{\cdot}L^{-1}/mg$ Inf. $NH_4{^+}-N{\cdot}L^{-1}$) drives stable 50% partial nitritation at $32^{\circ}C$ and ambient temperature, respectively. Alkalinity ratio was proposed as new strategy for 50% partial nitritation without pH control in both temperature regimes. Because of the results, it was added amound of BA required only for 50% nitritation to inhibit nitratation. The effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio reached almost 100% when initial bicarbonate alkalinity ratios (mg $NaHCO_3{\cdot}L^{-1}/mg$ Inf. $NH_4{^+}-N{\cdot}L^{-1}$) were 6.8 (R1) and 6.7 (R2), respectively. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) results demonstrated that AOB was the dominant nitrifying bacteria and NOB was negligible after adopting process control.

키워드

참고문헌

  1. Tchobanoglous, G., Burton, F. L. and Stensel, D. H., Wastewater Engineering: Treatment Disposal and Reuse, 4th Ed. McGraw-Hill, New York(2003).
  2. Kazuichi, I., Saxhiko, Y., Tatsuo, S., Yuhei, I. and Satoshi, T, "Nitrification of landfill leachate using immobilized nitrifying bacteria at low temperatures," Biochem. Eng. J., 37, 49-55 (2007). https://doi.org/10.1016/j.bej.2007.03.008
  3. Kartal, B., van Niftrik, L., Rattray, J., van de Vossenberg, J. L., Schmid, M. C., Sinninghe Damst, J., Jetten, M. S. and Strous, M., "Candidatus'Brocadia fulgida': an autofluorescent anaerobic ammonium oxidizing bacterium," FEMS Microbiol. Ecol., 63(1), 46-55(2008). https://doi.org/10.1111/j.1574-6941.2007.00408.x
  4. van Dongen, L. G. J. M., Jetten, M. S. M. and van Loosdrecht, M. C. M., The combined Sharon/Anammox process, STOWA Report, IWA Publishing London, UK(2001).
  5. Ganigué, R., López, H., Balaguer, M. D. and Colprim, J., "Partial ammonium oxidation to nitrite of high ammonium content urban landfill leachates," Water Res., 41, 3317-3326 (2007). https://doi.org/10.1016/j.watres.2007.04.027
  6. van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. M. and Kuenen, J. G., "Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor," Microbiol., 142(8), 2187-2196(1996). https://doi.org/10.1099/13500872-142-8-2187
  7. Ahn, Y. H. and Choi, H. C., "Corrigendum to Autotrophic nitrogen removal from sludge digester liquids in upflow sludge bed reactor with external aeration," Proc. Biochem., 41, 1945-1950(2006). https://doi.org/10.1016/j.procbio.2006.04.006
  8. Hwang, I.-S. and Min, K.-S., "Partial nitrification of wastewater with strong N for anaerobic nitrogen removal," Tans. Kor. Soc. Environ. Eng.. 28, 414-420(2006).
  9. Anthonisen, A. C., Loehr, R. C., Prakasam,, T. B. S. and Srinath, E. G., "Inhibition of nitrification by ammonia and nitrous acid," J. Water Pollut. Control Fed., 48(5), 835-852 (1976).
  10. Kim, J. H., Guo, X. J. and Park, H. S., "Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation," Proc. Biochem., 43, 154-160(2008). https://doi.org/10.1016/j.procbio.2007.11.005
  11. Hellinga, C., Schellen, A. A. J. C., Mulder, J. W., van Loosdrechet, M. C. M. and Heijnen J. J., "The SHARON process: an innovative method for nitrogen removal from ammonia- rich wastewater," Water Sci. Technol., 37, 135-142 (1998).
  12. van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. M. and Kuenen, J. G., "Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor," Microbiol., 142(8), 2187-2196(1996). https://doi.org/10.1099/13500872-142-8-2187
  13. Strous, M., van Gerven, Z. P., Kuenen, J. G. and Jetten, M. S. M., "Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations," Water Res., 31, 1955- 1962(1997). https://doi.org/10.1016/S0043-1354(97)00055-9
  14. Strous, M., Kuenen, J. G. and Jetten, M. S. M., "Key physiology of anaerobic ammonium oxidation," Appl. Environ. Microbiol., 65, 3248-3250(1999).
  15. Isaka, K., Yoshie, S., Suimino, T., Inamori, Y. and Tsuneda, S., "Nitrification of landfill leachate using immobilized nitrifying bacteria at low temperatures," Biochem. Eng. J., 37, 49-55(2007). https://doi.org/10.1016/j.bej.2007.03.008
  16. Feng, Y.-J., Tseng, S.-K., Hsia, T.-H., Ho, C.-M. and Chou, W.-P., "Partial nitrification of ammonium-rich wastewater as pretreatment for anaerobic ammonium oxidation (Anammox) using membrane aeration bioreactor," J. Biosci. Bioeng., 104, 182-187(2007). https://doi.org/10.1263/jbb.104.182
  17. Bae, H. and Jung, J.-Y., "Qualitative and Quantitative Analysis of Microbial Community Structure in the Sequencing Batch Reactor for Enriching ANAMMOX Consortium," Tans. Kor. Soc. Environ. Eng.. 31, 919-926(2009).
  18. APHA, WEF and ASCE, Standard Methods for the Examination of Water and Wastewater. 20th Eds., Washington DC, USA(1998).
  19. Aslan, S., Miller, L. and Dahab, M., "Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors," Bioresour. Technol., 100, 659- 664(2009). https://doi.org/10.1016/j.biortech.2008.07.033
  20. Wett, B. and Rauch, W., "The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater," Water Res., 37(5), 1100-1110 (2003). https://doi.org/10.1016/S0043-1354(02)00440-2
  21. Guisasola, A., Petzet, S., Baeza, J.A., Carrera, J. and Lafuente, J., "Inorganic carbon limitations on nitrification: experimental assessment and modeling," Water Res., 41, 277-286 (2007). https://doi.org/10.1016/j.watres.2006.10.030

피인용 문헌

  1. Effects of the ammonium loading rate on nitrite-oxidizing activity during nitrification at a high dose of inorganic carbon vol.53, pp.8, 2018, https://doi.org/10.1080/10934529.2018.1439854