DOI QR코드

DOI QR Code

Characteristics of Residual Free Chlorine Decay in Reclaimed Water

하수재이용수의 유리잔류염소 수체감소 특성 연구

  • Kang, Sungwon (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Lee, Jaiyoung (Department of Environmental Engineering, University of Seoul) ;
  • Lee, Hyundong (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Park, Jaehyun (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Kwak, Pilljae (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Oh, Hyunje (Environmental Engineering Research Division, Korea Institute of Construction Technology)
  • 강성원 (한국건설기술연구원 환경연구실) ;
  • 이재영 (서울시립대학교 환경공학부) ;
  • 이현동 (한국건설기술연구원 환경연구실) ;
  • 박재현 (한국건설기술연구원 환경연구실) ;
  • 곽필재 (한국건설기술연구원 환경연구실) ;
  • 오현제 (한국건설기술연구원 환경연구실)
  • Received : 2012.09.25
  • Accepted : 2013.04.15
  • Published : 2013.04.30

Abstract

The reclaimed water has been highlighted as a representative alternative to solve the lacking water resources. This study examined the reduction of residual free chlorine by temperature (5, 15, $25^{\circ}C$) and initial injection concentration (1, 2, 4, 6 mg/L) in the reclaimed water and carried out propose on the calculating method of the optimal chlorine dosage. As the reclaimed water showed a very fast reaction with chlorine at the intial time comparing to that of drinking water, the existing general first-order decay model ($C_t=C_o(e^{-k_bt})$) was not suitable for use. Accordingly, the reduction of residual free chlorine could be estimated in a more accurate way as a result of applying the exponential first-order decay model ($C_t=a+b(e^{-k_bt})$). ($r^2$=0.872~0.988). As a result of calculating the bulk decay constant, it showed the highest result at 653 $day^{-1}$ under the condition of 1 mg/L, $25^{\circ}C$ for the initial injection whereas it showed the lowest result at 3.42 $day^{-1}$ under the condition of 6 mg/L, $5^{\circ}C$ for the initial injection. The bulk decay constant tends to increase as temperature increases, whereas the bulk decay constant tends to decrease as the initial injection concentration increases. More accurate calculation for optimal chlorine dosage could be done by using the experimental results for 30~5,040 min, after the entire response time is classified into 0~30 min and 30~5,040 min to calculate the optimal chlorine dosage. In addition, as a result of calculating the optimal chlorine dosage by temperature, the relationships of initial chlorine demand (y) by temperature (x) could be obtained such as y=1.409+0.450x to maintain 0.2 mg/L of residual free chlorine at the time after 4 hours from the chlorine injection.

하수재이용수는 부족한 수자원 문제를 해결할 수 있는 대표적인 대안으로 주목받고 있다. 본 연구에서는 하수재이용수의 공급시 유리잔류염소의 수체감소 특성을 온도별(5, 15, $25^{\circ}C$), 초기 주입농도별(1, 2, 4, 6 mg/L)로 살펴보았고 그 결과를 이용하여 최적 염소주입량을 산정하는 방법에 대하여 연구하였다. 하수재이용수는 정수와 비교하여 염소주입시 반응속도가 초기에 매우 빠르게 나타나 기존의 general first-order decay model ($C_t=C_o(e^{-k_bt})$)을 사용하기에 부적합하여 exponential firstorder decay model ($C_t=a+b(e^{-k_bt})$)을 적용한 결과 유리잔류염소의 감소를 더욱 정확하게 예측할 수 있었다($r^2$=0.872~0.988). 수체감소계수를 산출한 결과 초기주입량 1 mg/L, $25^{\circ}C$의 조건에서 653 $day^{-1}$로 가장 크게 나타났고, $5^{\circ}C$, 초기주입량 6 mg/L의 조건에서 3.42 $day^{-1}$로 가장 낮았다. 수체감소계수는 온도가 증가함에 따라 수체감소계수는 증가하는 경향을 나타내었고, 초기 주입농도가 증가함에 따라 수체감소계수는 감소하는 경향을 나타내었다. 적정 초기 염소요구량을 산정하기 위해서 전체 반응기간을 0~30분, 30~5,040분으로 구분한 후, 30~5,040분의 실험결과를 사용한 예측식을 사용함으로써 더욱 정확한 염소주입량 산정을 할 수 있었다. 또한, 온도별로 최적 염소주입량을 산정한 결과 염소주입 후 4시간이 경과한 시점에서 유리잔류염소 0.2 mg/L를 유지하기 위해서는 온도(x)별 초기 염소요구량(y)의 관계를 y = 1.409 + 0.450x와 같이 얻을 수 있었다.

Keywords

References

  1. Kim, I. S. and Oh, B. S., "Technologies of seawater desalination and wastewater reuse foe solving water shortage," J. Kor. Soc. Environ. Eng., 30(12), 1197-1202(2008).
  2. Ministry of Environment, "Master plan of water resuse"(2011).
  3. Jjemba, P. K., Weinrich, L., Cheng, W., Giraldo, E. and Le- Chevallier, M. W., "Guidance document on the microbiological quality and biostability of reclaimed water following storage and distribuion (WRF-05-002)," Watereuse foundation (2010).
  4. Ryu, H., Alum, A. and Abbazadegan, M., "Microbial characterization and population changes in nonpotable reclaimed water distribution system," Environ. Sci. Technol., 39, 8600- 8605(2005). https://doi.org/10.1021/es050607l
  5. Vasconcelos, J. J., Rossman, L. A., Grayman, W. M., Boulos, P. F., Clark R. M., "Kinetics of chlorine decay," J. Am. Water Works Assoc., 89, 54-65(1997).
  6. Kim, D. H., Lee, D. J., Kim., K. P., Bae, C. H. and Joo, H. E., "Computing the dosage and analysing the effect of optimal rechlorination for adequate residual chlorine in water distribution system," J. Kor. Soc. Environ. Eng., 32(10), 916-927.
  7. Yoo, H. J., Kim, J. W., Jeong, H. J. and Lee, H. K., "Chlorine residual prediction in drinking water distribution system using EPANET," Kor. J. Environ. Health, 29(1), 8-15 (2003)
  8. Haddix, P. L., Shaw, N. J. and LeChevallier, M. W., "Characterization of bioluminescent derivatives of assimilable organic carbon test bacteria," Appl. Environ. Microbiol., 70, 850-854(2004). https://doi.org/10.1128/AEM.70.2.850-854.2004
  9. Weinrich, L. A., Giraldo, E. and LeChevallier, M. W., "Development and application of a bioluminescent AOC test in reclaimed water," Appl. Environ. Microbiol., 75, 7385-7390 (2009). https://doi.org/10.1128/AEM.01728-09
  10. Weinrich, L. A., Jjemba, P. K., Giraldo, E. and LeChevallier, M. W., "Implication of organic carbon in the detteriaration of eater quality in reclaimed water distribution systems," Water Res., 44, 5367-5375(2010). https://doi.org/10.1016/j.watres.2010.06.035
  11. Norton, C. D., LeChevallier, M. W. and Falkinham, J. O., "Survival of Mycobacterium avium in a model distribution system," Water Res., 38, 1457-1466(2004). https://doi.org/10.1016/j.watres.2003.07.008
  12. Warton, B., Heitz, A., Joll, C. and Kagi, R., "A new method for calculation of the chlorine demand of natural and treated waters," Water Res., 40, 2877-2884(2006). https://doi.org/10.1016/j.watres.2006.05.020
  13. Hallam, N. B., West, J. R., Forster, C. F., Powell, J. C. and Spencer, I., "The decay of chlorine associated with the pipe wall in water distribution systems," Water Res., 36(14), 3479-3488(2002). https://doi.org/10.1016/S0043-1354(02)00056-8
  14. Hua, F., West, J. R., Barker, R. A. and Forster, C. F., "Modelling of chlorine decay in municipal water supplies," Water Res., 33(12), 2735-2746(1999). https://doi.org/10.1016/S0043-1354(98)00519-3