DOI QR코드

DOI QR Code

금속산업폐수의 재이용을 위한 물리화학적 전처리공정의 유기물 및 무기물제거 특성 평가

Evaluation of Organics and Inorganics Removal of Physicochemical Pretreatment Processes for Reuse of Metal Industry Wastewater

  • 하동환 (영남대학교 환경공학과) ;
  • 정진영 (영남대학교 환경공학과)
  • Ha, Dong-Hwan (Department of Environmental Engineering, Yeungnam University) ;
  • Jung, Jin-Young (Department of Environmental Engineering, Yeungnam University)
  • 투고 : 2013.02.11
  • 심사 : 2013.03.15
  • 발행 : 2013.03.30

초록

역삼투기반 금속산업폐수 물재이용시스템의 전처리공정을 선정하기 위해 연수화, 응집침전, 활성탄, 이온교환 및 중화 침전공정에 대한 무기물 및 유기물 제거특성을 조사하였다. 유기물제거를 위해 DOC중 친수성 및 소수성 유기물을 분류하였으며, 이를 이용하여 조합공정을 최적화하였다. 다양한 전처리공정 중에서 연수화는 금속산업 방류수에 존재하는 칼슘경도(1,201 mg/L as $CaCO_3$)를 93.4%제거함과 동시에 소수성유기물을 모두 제거하는 것으로 나타났다. 연수화 후에 응집침전공정을 연계할 경우, 방류수에 포함된 유기물 5.1 mg DOC/L을 1.6 mg DOC/L까지 저감할 수 있었다. 또한, 금속공정 원폐수를 대상으로 가성소다를 이용한 중화침전공정을 적용하였을 때, 수중경도를 유발하지 않으면서도 철과 총용존성고형물을 효과적으로 제거할 수 있는 것으로 나타났다.

Several pretreatment processes such as softening, coagulation and precipitation, activated carbon adsorption, ion-exchange and neutralization processes were studied to remove organics and inorganics for selection of the RO based reusing system of metal industry wastewater. The effects of the hydrophobic/hydrophilic fractions of the organics on DOC removal were tested and used to optimize the combination process. Among various pretreatment processes, softening could reduce 93.4% of hardness and could remove all hydrophobic organics from the effluent of metal industry wastewater. Softening followed by coagulation process could reduce DOC (Dissolved Organic Carbon) from 5.1 mg/L to 1.6 mg/L. In addition, as a result of physiochemical pretreatment to raw wastewater of metal industry, neutralization with NaOH showed an efficient removal of iron and TDS (Total Dissolved Solids) without increase in the hardness.

키워드

참고문헌

  1. Potts, D. E., Ahlert, R. C. and Wang, S. S., "A critical review of fouling of reverse osmosis membranes," Desalination, 36 (3), 235-264(1981). https://doi.org/10.1016/S0011-9164(00)88642-7
  2. Khan, M. H., Ha D. H. and Jung, J. Y., "Optimizing the industrial wastewater pretreatment by activated carbon and coagulation: Effects of hydrophobicity/hydrophilicity and molecular weights of dissolved organics," J. Environ. Sci. Health, Part A, 48(5), 534-542(2013). https://doi.org/10.1080/10934529.2013.730443
  3. Sostar-Turk, S., Petrinic I. and Simonic, M., "Laundry wastewater tretment using coagulation and membrane filtration," Res. Conservation & Recycling, 44(2), 185-196(2005). https://doi.org/10.1016/j.resconrec.2004.11.002
  4. Fritzmann, C., Lowenberg, J., Wintgens, T. and Melin, T., "State-of-the-art of reverse osmosis desalination," Desalination, 216(1-3), 1-76(2007). https://doi.org/10.1016/j.desal.2006.12.009
  5. Drews, A., Lee, C. H. and Kraume, M., "Membrane fouling- a review on the role of EPS," Desalination, 200(1-3), 186-188(2006). https://doi.org/10.1016/j.desal.2006.03.290
  6. Redondo, J. A. and Lomax, I., "Experience with pretreatment of raw water with high fouling potential for reverse osmosis plant using FILMTEC, membranes," Desalination, 110(1-2), 167-182(1997). https://doi.org/10.1016/S0011-9164(97)81590-1
  7. Redondo, J. A. andLomax, I., "Y2K generation FILMTEC RO membranes combined with high fouling potential: summery of experience," Desalination, 136(1-3), 287-306(2001). https://doi.org/10.1016/S0011-9164(01)00192-8
  8. Baker, J. S. and Dudley, L. Y., "Biofouling in membrane systems- A review," Desalination, 118(1-3), 81-90(1998). https://doi.org/10.1016/S0011-9164(98)00091-5
  9. Vrijenhoek, E. M., Hong, S. K. and Elimelech, M., "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes," J. Membr. Sci., 188(1), 115-128(2001). https://doi.org/10.1016/S0376-7388(01)00376-3
  10. Kweon, J. H. and Lawler, D. F., "Fouling mechanisms in the integrated system with softening and ultrafiltration," Water Res., 38(19), 4164-4172(2004). https://doi.org/10.1016/j.watres.2004.06.013
  11. Al-Malek, S., Agshichev, S. P. and Abdulkarim, M., "Technoeconomic aspects of conventional pretreatment before reverse osmosis (Al-Fujairah Hybrid Desalination Plant)," IDA World Congress, Singapore(2005).
  12. American Public Health Association, American Water Works Association, Water Environment Federation. Standard methods for the examination of water and wastewater, 21th ed. Washington, DC(2005).
  13. Nason, J. A. and Lawler, D. F., "Particle size distribution dynamics during precipitative softening: Declining solution composition," Water Res., 43(2), 303-312(2009). https://doi.org/10.1016/j.watres.2008.10.017
  14. Rahardiantoa, A., Gaoa, J., Gabelichb, C. J., Williamsc, M. D. and Cohen, Y., "High recovery membrane desalting of lowsalinity brackish water: Integration of accelerated precipitation softening with membrane RO," J. Membr. Sci., 289, 123-137(2007). https://doi.org/10.1016/j.memsci.2006.11.043
  15. Stoica-Guzun, A., Stroescu, M., Jinga, S., Jipa, I., Dobre, T. and Dobre, L., "Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes," Ultrasonics Sonochem., 19, 909-915(2012). https://doi.org/10.1016/j.ultsonch.2011.12.002
  16. Shirazi, S., Lin, C. J. and Chen, D., "Inorganic Fouling of pressure-driven membrane processes-A critical review," Desalination, 250, 236-248(2010). https://doi.org/10.1016/j.desal.2009.02.056
  17. Edzwald, J. K. and Haarhoff, J., "Seawater pretreatment for reverse osmosis: Chemistry, contaminants, and coagulation," Water Res., 45(17), 5428-5440(2011). https://doi.org/10.1016/j.watres.2011.08.014

피인용 문헌

  1. Study on Discharge Characteristics of Water Pollutants among Industrial Wastewater per Industrial Classification and the Probability Evaluation vol.38, pp.1, 2016, https://doi.org/10.4491/KSEE.2016.38.1.14