DOI QR코드

DOI QR Code

CSOs처리를 위한 응집침전시스템에서 슬러지 반송에 의한 고형물 처리효율평가

An Evaluation of Solid Removal Efficiency in Coagulation System for Treating Combined Sewer Overflows by Return Sludge

  • Ha, Sung-Ryong (Department of Urban Engineering, Chungbuk National University) ;
  • Lee, Seung-Chul (Department of Urban Engineering, Chungbuk National University)
  • 투고 : 2013.01.23
  • 심사 : 2013.02.22
  • 발행 : 2013.03.30

초록

본 연구는 CSOs의 처리를 위해 개발된 응집침전시스템의 운전초기에 발생하는 침전슬러지를 응집반응조에 반송하였다. 슬러지 반송을 통해 생성되는 플록의 형성특성 및 침전특성을 분석하고, CSOs 유입초기의 고농도 입자성 물질이 가중응집제로 활용될 수 있는지 그 가능성을 평가하고자 하였다. 그 결과, CSOs는 유입초기 고농도의 오염물질을 포함하며, 특히 20 ${\mu}m$ 이상의 입자성 물질이 다량 유입되었다. 응집침전시스템을 통해 처리된 유출수는 고농도의 오염물질이 유입되는 시기에는 처리수질이 낮아졌으나, 이후 유입오염물질의 농도가 감소되는 시점에서는 처리수질이 증가하는 현상을 보였다. 슬러지반송 운전에서 생성되는 플록은 마이크로샌드를 주입한 플록에 비해 크기는 비슷하고, 침강속도는 55.1 cm/min에서 21.5 cm/min으로 감소하였다. 반송에 사용되는 침전조 하부에 축적된 슬러지의 SVI값은 72로 침강성이 양호하였으며, 침전된 슬러지가 압밀침전으로 인해 부피가 급격히 감소하는데 걸리는 시간은 10분 정도로 분석되었다. 반송슬러지는 인발 0.3%에 반송 0.1%의 조건에서 지속적인 슬러지 발생에 따른 침전과 인발의 균형이 형성되는 것으로 분석되었으며, 이때, 응집반응조의 평균 TS농도는 100~200 mg/L, VS농도는 50~100 mg/L 정도를 유지하도록 슬러지를 반송하는 것이 적절한 것으로 분석되었다. CSOs의 입자성물질을 함유한 슬러지의 반송은 유입수질의 변화에 대응하여 안정적인 처리수의 수질을 확보할 수 있고, 약품주입량의 감소와 함께 슬러지 발생량의 감소효과를 기대할 수 있다.

In this study, the sludge that occurs in the initial operation of coagulation system developed for the treatment of CSOs were returned to the flocculation reactor. The purposes of this study were to analyze the Characteristics of flocs that are generated through the recycling sludge and settling characteristics of sludge, and to evaluate the possibility that high concentrations of particulate matter in the initial inflow of CSOs could be used as an weighted coagulant additive. As a result, the concentration of treated CSOs pollutants at the beginning of the CSOs influent with a large amount of particulate matter over 20 ${\mu}m$ was low, after gradually increasing the concentrations of them. The flocs generated from the sludge return were similar in size compared to flocs generated through injection of micro sands, and settling velocity in case of return sludge injection was decreased from 55.1 cm/min to 21.5 cm/min. SVI value of the sludge accumulated at the bottom of the sedimentation tank was 72, and settled sludge volume decreased rapidly due to the consolidation of sludge to the time it takes to 10 minutes. these mean that sludge used for recycling has good settling characteristic. A condition of returned sludge which is 0.1% return of 0.3% extraction was formed in the balance of settlement and extraction. In this case, This condition was to be adequate to maintain the proper concentration such as 100~200 mg/L of TS and 50~100 mg/L of VS in the flocculation reactor. The usage of the return sludge containing particulate matters of CSOs as an weighted coagulant additive was able to secure a stable treated water quality despite the change of influent water quality dynamically. Furthermore, it can be expected to reduce the alum dosage along with the sludge production.

키워드

참고문헌

  1. Park, I. H., Kim, H. M., Chae, S. K. and Ha, S. R., "Probability Mass First Flush Evaluation for Combined Sewer Discharges" J. Environ. Sci., 22(6), 915-922(2010). https://doi.org/10.1016/S1001-0742(09)60198-4
  2. Lee, J. K., Bang, K. W. and Lee, J. H., "A Study on Runoff Characteristics of Pollutants in Combined Sewer Overflow," J. Kor. Soc. Environ. Eng., 18(10), 1147-1160(1996).
  3. Lee, D. J., Yoon, H. S. and Shin, E. B., "Pollution Origins and Characteristics of Combined Sewer Overflows form Urban Area," J. Kor. Soc. Civil Eng., 23(6B), 597-606(2003).
  4. Samrani, A. G., Lartiges, B. S. and Villieras, F., "Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization," Water Res., 42, 951-960 (2008). https://doi.org/10.1016/j.watres.2007.09.009
  5. Lee, S. C. and Ha, S. R., "Removal of Zinc by Vortex Flow Separator as BMPs in Residential Area," J. Environ. Impact Ass., 19(4) 443-452(2010).
  6. Guibein, E., Destalle, F. and Binot, P., "The ACTIFLO process: a highly compact and efficient process to prevent water pollution by stormwater flows," Water Sci. Technol., 30(1), 87-96(1994).
  7. Park, N. Y., "Overview of Recent Development of CSO treatment facilities-focused on the U.S.," Civil Eng., 51(2), 47- 54(2003).
  8. Yoon, T. I. and Kim, C. G., "Case studies on rapid coagulation processes to cope with total emission controls" Desalination, 231, 290-296(2008). https://doi.org/10.1016/j.desal.2007.10.033
  9. Han, J. K., Joo, J. Y., Lee, B. J., Na, J. H. and Park, C. H., "Optimal Operating Condition of Vortex Separator for Combined Sewer Overflows Treatment," J. Kor. Soc. Water Wastewater, 23(5), 557-564(2009).
  10. Bang, K. W. and Lee, J. H., "Combined Sewer Overflow Control using the Swirl Concentrator," J. Kor. Soc. Environ. Eng., 23(1), 21-30(2001).
  11. Gwon, E. M., Oh, S. J., Kim, H. S., Cho, S. J., Lee, S. C., Ha, S. R., Lim, C. H., Park, J. H. and Kang, S. H., "A Performance Evaluation of the Highly Efficient Coagulation System for the Treatment of Overflows from Primary Clarifier in WWTP," J. Kor. Soc. Water, Wastewater, 25(3), 391- 398(2011).

피인용 문헌

  1. Optimizing Coagulation Conditions of Magnetic based Ballast Using Response Surface Methodology vol.39, pp.12, 2017, https://doi.org/10.4491/KSEE.2017.39.12.689