DOI QR코드

DOI QR Code

산화철 나노입자 부착 반응성 세라믹 멤브레인의 막 오염 제어

Reactive Ceramic Membrane Incorporated with Iron Oxide Nanoparticle for Fouling Control

  • 박호식 (광주과학기술원 환경공학부) ;
  • 최희철 (광주과학기술원 환경공학부)
  • Park, Hosik (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Choi, Heechul (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
  • 투고 : 2013.01.24
  • 심사 : 2013.02.21
  • 발행 : 2013.03.30

초록

본 연구에서는 고급산화공정에서 촉매제로 사용되는 산화철 나노입자를 세라믹 멤브레인 표면에 부착하여 오존 산화 공정과 연계 처리가 가능한 반응성 세라믹 멤브레인을 합성하고, 이를 이용한 하이브리드 세라믹 멤브레인 시스템(일원화된 오존-멤브레인 시스템)을 통해 자연유기화합물에 의한 막 오염 제어 특성을 평가하였다. 디스크 형태의 알루미나 정밀여과 및 한외여과 세라믹 멤브레인에 소결법을 사용하여 산화철 나노입자를 부착하였으며, 산화철 나노입자 양에 따른 반응성 세라믹 멤브레인의 특성을 분석하였다. 주사전자현미경(SEM) 분석을 통해 세라믹 멤브레인 표면 위에 산화철 나노입자 층이 형성되었음을 확인할 수 있었고, 부착된 산화철 나노입자의 크기는 대략 50 nm임을 확인할 수 있었다. 반응성 세라믹 멤브레인과 기존 세라믹 멤브레인의 막 투과 성능(Pure water permeability) 비교 실험 결과 큰 차이를 보이지 않았는데, 이는 반응성 세라믹 멤브레인 표면에 형성된 산화철 나노입자 층이 멤브레인의 투과 유량에 큰 영향을 끼치지 않음을 확인할 수 있었다. 하이브리드 세라믹 멤브레인 시스템을 통한 자연유기화합물의 막 오염(Fouling) 및 막 오염 회복(Fouling recovery) 실험을 통해, 반응성 세라믹 멤브레인을 사용한 시스템이 산화철 나노입자와 오존과의 반응을 통해 생성된 수산화라디칼이 보다 효율적으로 자연유기화합물을 분해하여 막 오염을 저감하는 것을 확인할 수 있었다. 또한 원수와 처리수 내의 자연유기화합물 분석을 통해, 반응성 세라믹 멤브레인 시스템이 보다 효과적으로 자연유기화합물의 방향성 성분 감소, 고분자량 비율 감소, 소수성 성분 감소 등을 통해 막 오염을 제어함을 확인할 수 있었다.

Hybrid ceramic membrane (HCM) processes that combined ozonation with a ceramic membrane (CM) or a reactive ceramic membrane (RM), an iron oxide nanoparticles (IONs) incorporated-CM were investigated for membrane fouling control. Alumina disc type microfiltration and ultrafiltration membranes doped with IONs by sintering method were tested under varying mass fraction of IONs. Scanning electron microscope (SEM) images showed that IONs were well-doped on the CM surface and doped IONs were approximately 50 nm in size. Change in the pure water permeability of RM was negligible compared to that of CM. These results indicate that IONs incorporation onto CM had little effect on CM performance in terms of the flux. Natural organic matter (NOM) fouling and fouling recovery patterns during HCM processes confirmed that the RM-ozonation process enhanced the destruction of NOM and reduced the extent of fouling more than the CM-ozonation process by hydroxyl radical formation in the presence of IONs on RM. In addition, analyses of NOM in the feed water and the permeate showed that the efficiency of membrane fouling control results from the NOM degradation during HCM processes; leading to removal and transformation of relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions.

키워드

참고문헌

  1. Li, Q. and Elimelech, M. "Organic fouling and chemical cleaning of nanofiltration Membranes: Measurements and mechanisms," Environ. Sci. Technol., 38(17), 4683-4693(2004). https://doi.org/10.1021/es0354162
  2. Cho, J., Amy, G. and Pellegrino, J. "Membrane filtration of natural organic matter: comparison of flux decline, NOM rejection, and foulants during filtration with three UF membranes," Desalination, 127(3), 283-298(2000). https://doi.org/10.1016/S0011-9164(00)00017-5
  3. Lee, S. and Lee, C.-H. "Microfiltration and Ultrafiltration As a pretreatment for nanofiltration of surface water," Sep. Sci. Technol., 41(1), 1-23(2006). https://doi.org/10.1080/01496390500446426
  4. Roorda, J. H., Wortel, N. C., van Dalen, R., "New process for treatment of organically fouled water: experiences with WWTP effluent," Desalination, 178(1-3), 141-148(2005). https://doi.org/10.1016/j.desal.2004.11.034
  5. Tchobanoglous, G., Darby, J., Bourgeous, K., McArdle, J., Genest, P. and Tylla, M., "Ultrafiltration as an advanced tertiary treatment process for municipal wastewater," Desalination, 119(1-3), 315-321(1998). https://doi.org/10.1016/S0011-9164(98)00175-1
  6. Oh, B. S., Jang, H. Y., Hwang, T. M. and Kang, J. W., "Role of ozone for reducing fouling due to pharmaceuticals in MF (microfiltration) process," J. Membr. Sci., 289(1-2), 178-186(2007). https://doi.org/10.1016/j.memsci.2006.11.052
  7. Shanbhag, P. V., Guha, A. K., Sirkar, K. K., "Membranebased ozonation of organic compounds," Ind. Eng. Chem. Res., 37(11), 4388-4398(1998). https://doi.org/10.1021/ie980182u
  8. Huang, X., Leal, M. and Li, Q., "Degradation of natural organic matter by $TiO_2$ photocatalytic oxidation and its effect on fouling of low-pressure membranes," Water Res., 42 (4-5), 1142-1150(2008). https://doi.org/10.1016/j.watres.2007.08.030
  9. Karnik, B. S., Davies, S. H., Baumann, M. J. and Masten, S. J., "Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration," Environ. Sci. Technol., 39(19), 7656-7661(2005). https://doi.org/10.1021/es0503938
  10. Karnik, B. S., Davies, S. H. R., Chen, K. C., Jaglowski, D. R., Baumann, M. J. and Masten, S. J., "Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes," Water Res., 39(4), 728-734(2005). https://doi.org/10.1016/j.watres.2004.11.017
  11. Jung, H., Park, H., Kim, J., Lee, J. H., Hur, H. G., Myung, N. V. and Choi, H., "Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation," Environ. Sci. Technol., 41(13), 4741-4747(2007). https://doi.org/10.1021/es0702768
  12. Park, H., Ayala, P., Deshusses, M. A., Mulchandani, A., Choi, H. and Myung, N.V. "Electrodeposition of maghemite $({\gamma}-Fe_2O_3)$ nanoparticles," Chem. Eng. J., 139(1), 208-212 (2008). https://doi.org/10.1016/j.cej.2007.10.025
  13. Ravi, K. R., Murugesan, A., Udhayabanu, V., Subramanian, R. and Murty, B. S., "Microstructure and mechanical property of $Fe-Al_2O_3$ nanocpmposites synthesized by reactive milling followed by spark plasma sintering," Mater. Sci. Forum., 710, 291-296(2012).
  14. Tanju, K., Mark, A. S. and Ilke, E., "Survey of DOC and UV measurement practices : With implications for SUVA determination," J. Am. Water Works Assoc., 94(12), 68-80 (2002). https://doi.org/10.1002/j.1551-8833.2002.tb10250.x
  15. Her, N., Amy, G., Chung, J., Yoon, J. and Yoon, Y., "Characterizing dissolved organic matter and evaluating associated nanofiltration membrane fouling," Chemosphere, 70(3), 495-502(2008). https://doi.org/10.1016/j.chemosphere.2007.06.025
  16. Park, J. S., Choi, H., Ahn, K. H. and Kang, J.-W., "Removal mechanism of natural organic matter and organic acid by ozone in the presence of goethite," Ozone Sci. Eng., 26(2), 141-151(2004). https://doi.org/10.1080/01919510490439285
  17. Haag, W. R. and Yao, C. C. D., "Rate constants for reaction of hydroxyl radicals with several drinking water contaminants," Environ. Sci. Technol., 26(5), 1005-1013(1992). https://doi.org/10.1021/es00029a021
  18. Kasprzyk-Hordern, B., Raczyk-Stanislawiak, U., Swietlik, J. and Nawrocki, J., "Catalytic ozonation of natural organic matter on alumina," Appl. Catal. B, 62(3-4), 345-358(2006). https://doi.org/10.1016/j.apcatb.2005.09.002
  19. Zhang, T., Lu, J., Ma, J. and Qiang, Z., "Comparative study of ozonation and synthetic goethite-catalyzed ozonation of individual NOM fractions isolated and fractionated from a filtered river water," Water Res., 42(6-7), 1563-1570(2008). https://doi.org/10.1016/j.watres.2007.11.005
  20. Gu, B., Schmitt J., Chen Z., Liang L. and McCarthy J. F. "Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models," Environ. Sci. Technol., 28, 38-46(1994). https://doi.org/10.1021/es00050a007