DOI QR코드

DOI QR Code

Cupriavidus necator를 이용한 Poly(3-hydroxybutyrate) 생산에 이산화탄소의 농도가 미치는 영향

Production of Poly(3-hydroxybutyrate) by Cupriavidus necator at Various Concentrations of Carbon Dioxide

  • 박인선 (서울대학교 건설환경공학부) ;
  • 조은혜 (서울대학교 건설환경공학부) ;
  • 남경필 (서울대학교 건설환경공학부)
  • Park, Inseon (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Jho, Eun Hea (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Nam, Kyoungphile (Department of Civil and Environmental Engineering, Seoul National University)
  • 투고 : 2012.11.01
  • 심사 : 2013.02.08
  • 발행 : 2013.03.30

초록

Polyhydroxyalkanoates (PHAs)는 다양한 미생물이 세포 내에 저장하는 에너지 저장물질로 생체적합성 플라스틱의 원료 물질이다. 본 연구에서는 Cupriavidus necator를 사용하여 독립영양배양조건으로 poly(3-hydroxybutyrate) (P(3HB))를 생산함에 있어서 $CO_2$ 농도가 미생물의 성장과 P(3HB)의 축적에 미치는 영향을 확인하였다. 첫 번째 질소원을 포함한 배지에서의 6일 간의 배양 단계에서 C. necator의 균체수는 $CO_2$ 농도와 관계없이 증가했지만, 균체 내에 축적된 P(3HB)의 양은 $CO_2$ 농도가 1-20%로 증가함에 따라 감소하였다. 두 번째 질소원이 제거된 배지에서의 4일 간의 배양 단계에서 P(3HB)의 축적량은 3% $CO_2$에서 가장 많았다. 하지만 전체 10일 간의 배양기간 동안 합성된 총 P(3HB)의 양은 1, 3, 10, 20% 순으로 나타났다. 따라서 본 연구에서는 $CO_2$를 사용하여 P(3HB)를 축적할 때 1-20% $CO_2$ 중에서 1% $CO_2$가 가장 효율적임을 확인하였다.

Polyhydroxyalkanoates (PHAs) are synthesized by numerous bacteria as carbon and energy storage compounds and are raw materials for biocompatible plastics. In this paper, the effect of $CO_2$ concentrations on the growth of C. necator and the accumulation of Poly(3-hydroxybutyrate) (P(3HB)) are investigated by increasing the $CO_2$ concentration in the substrate gas mixture. During 6 d cultivation in a nitrogen-present mineral medium, the $CO_2$ concentration did not affect the growth of the cells, while the Poly(3- hydroxybutyrate) (P(3HB)) content decreased with increasing $CO_2$ concentrations from 1% to 20%. During 4 d cultivation in the nitrogen-limited medium, the P(3HB) accumulation was the greatest at 3% $CO_2$; however, the total amount of accumulated P(3HB) was the greatest at 1% $CO_2$, which decreased with increasing $CO_2$ concentrations. The results indicate that the gas mixture with 1% $CO_2$ is the most effective in both growing the cells and accumulating P(3HB) under our experimental conditions.

키워드

참고문헌

  1. Madison, L. L. and Huisman, G. W., "Metabolic engineering of poly(3-hydroxyalkanoates) : from DNA to plastic," Microbiol. Mol. Biol. Rev., 63(1), 21-53(1999).
  2. Verlinden, R. A. J., Hill, D. J., Kenward, M. A., Willians, C. D. and Radecka, I., "Bacterial systhesis of biodegradable Polyhydroxyalkanoates," J. Appl. Microbiol., 102, 1437-1449(2007). https://doi.org/10.1111/j.1365-2672.2007.03335.x
  3. Chen, G.-Q. and Wu, Q., "The application of Polyhydroxyalkanoates as tissue engineering materials," Biomater., 26, 6565-6578(2005). https://doi.org/10.1016/j.biomaterials.2005.04.036
  4. Akaraonye, E., Keshavarz, T. and Roy, I., "Production of Polyhydroxyalkanoates: the future green materials of choice," J. Chem. Technol. Biotechnol., 85, 732-743(2010). https://doi.org/10.1002/jctb.2392
  5. Kim, B. S., "Production of poly(3-hydroxybutyrate) from inexpensive substrates," Enzyme Microbial Technol., 27, 774-777(2000). https://doi.org/10.1016/S0141-0229(00)00299-4
  6. Ishizaki, A., Tanaka, K. and Taga, N., "Microbial production of poly-D-3-hydroxybutyrate form $CO_2$," Appl. Microbiol. Biotechnol, 57, 6-12(2001). https://doi.org/10.1007/s002530100775
  7. Khanna, S. and Srivastava, A. K., "Recent advances in microbial polyhydroxyalkanoates," Proc. Biochem., 40, 607-619 (2005). https://doi.org/10.1016/j.procbio.2004.01.053
  8. Ojumu, T. V., Yu, J. and Solomon, B. O., "Production of Polyhydroxyalkanoates, a bacterial biodegradable polymer," African J. Biotechnol., 3(1), 18-24(2004). https://doi.org/10.5897/AJB2004.000-2004
  9. Ishizaki, A. and Tanaka, K., "Production of poly-3-hydroxybutyric acid from carbon dioxide by Alcaligenes eutrophus ATCC $17697^T$," J. Fermentation Bioeng., 71(4), 254-257 (1991). https://doi.org/10.1016/0922-338X(91)90277-N
  10. Tanaka, K. and Ishizaki, A., "Production of poly-D-3-hydroxybutyric acid from carbon dioxide by a two-stage culture method employing Alcaligenes eutrophus ATCC 17697T," J. Fermentation Bioeng., 77(4), 425-427(1994). https://doi.org/10.1016/0922-338X(94)90017-5
  11. Tanaka, K. and Ishizaki, A., "Production of poly(D-3-hydroxybutyrate) from $CO_2$, $H_2$, and $O_2$ by high cell density autotrophic cultivation of Alcaligenes eutrophus," Biotechnol. Bioeng., 45, 268-275(1995). https://doi.org/10.1002/bit.260450312
  12. Volova, T. G., Kalacheva, G. S., Gorbunova, O. V. and Zhila, N. O., "Dynamics of activity of the key enzymes of polyhydroxyalkanoate metabolism in Ralstonia eutropha B5786," Appl. Biochem. Microbiol., 40(2), 170-177(2004). https://doi.org/10.1023/B:ABIM.0000018921.04863.d5
  13. Volova, T. G. and Kalacheva, G. S., "The synthesis of hydroxybutyrate and hydroxyvalerate copolymers by the bacterium Ralstonia eutropha," Microbiol., 74(1), 54-59(2005). https://doi.org/10.1007/s11021-005-0028-5
  14. Lim, S. H., "A Study on the purification and recovery of Poly (b-hydroxybutyrate-co-hydroxyvalerate) using SDS and NaOH and biodegradability," M. S. Dissertation, Ewha Womans University, Seoul(2001).
  15. Anderson, A. J. and Dawers, E. A., "Occurrence, metabolism, metabolic role, and industrial uses of bacterial Polyhydroxyalkanoates," Microbiol. Rev., 54, 450-472(1990).
  16. Pohlmann, A., "Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16," Nature Biotechnol., 24, 1257-1262(2006). https://doi.org/10.1038/nbt1244
  17. Reinecke, F. and Steinbuchel, A., "Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers," J. Molecular Microbiol. Biotechnol., 16, 91-108(2009) . https://doi.org/10.1159/000142897
  18. Dixon, N. M. and Kell, D. B., "The inhibition by CO_2$ of the growth and metabolism of micro-organisms," J. Appl. Bacteriol., 67, 109-136(1989). https://doi.org/10.1111/j.1365-2672.1989.tb03387.x
  19. Shang, L., Jiang, M., Ryu, C. H., Chang, H. N., Cho, S. H. and Lee, J. W., "Inhibitory effect of carbon dioxide on the fed-batch culture of Ralstonia eutropha: Evaluation by $CO_2$ pulse injection and autogenous $CO_2$ methods," Biotechnol. Bioeng., 83(3), 312-320(2003). https://doi.org/10.1002/bit.10670