
East Asian Mathematical Journal

Vol. 29 (2013), No. 5, pp. 511–519

http://dx.doi.org/10.7858/eamj.2013.035

THE BINOMIAL METHOD FOR A MATRIX SQUARE ROOT

Yeon-Ji Kim, Jong-Hyeon Seo, and Hyun-Min Kim†

Abstract. There are various methods for evaluating a matrix square
root, which is a solvent of the quadratic matrix equation X2 − A = 0.

We consider new iterative methods for solving matrix square roots of M -
matrices. Particulary we show that the relaxed binomial iteration is more

efficient than Newton-Schulz iteration in some cases. And we construct

a formula to find relaxation coefficients through statistical experiments.

1. Introduction

Any nonsingular matrix A ∈ Cn×n has a square root. The number of square
roots varies from two to infinite. If A is singular, the existence of a square
root depends on the Jordan structure of the zero eigenvalues [1], [4], [7]. For a
matrix A having no non-positive real eigenvalues, it has a unique square root
for which every eigenvalue has positive real part. This square root is called the
principal square root and denoted by A1/2. In other words, A1/2 is defined by
(A1/2)2 = A and Reλk(A1/2) > 0 for all k, where λk(A) denotes an eigenvalue
of A [4], [9].

We consider some numerical methods for finding matrix square roots of
M -matrices. The binomial iteration and the Newton-Schulz iteration were
compared by Higham [5]. We propose a new algorithm, which is modified and
is called the relaxed binomial iteration. In the Newton iteration, we must find
inverses of some matrices [3]. So we apply the Schulz iteration for finding inverse
matrices. Furthermore, we let the sign matrix of A as the starting matrix [8],
[10]. In this way, we get the Newton-Schulz iteration. Newton-Schulz iteration
for matrix square root:

Y0 = A, Z0 = I,
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Yk+1 = 1
2Yk(3I − ZkYk)

Zk+1 = 1
2 (3I − ZkYk)Zk

 (1.1)

Yk → A
1
2 , Zk → A−

1
2 as k →∞.

Definition 1.1. [6] For any square matrices A and B we write A ≥ B(A > B)
if [A]ij ≥ [B]ij([A]ij > [B]ij) for all i, j. Then we call that A is nonnega-
tive(positive) matrix if A ≥ 0(A > 0).

Definition 1.2. [6] The set of all λ ∈ C that are eigenvalues of A ∈ Mn is
called the spectrum of A and is denoted by σ(A). The spectral radius of A
is the nonnegative real number ρ(A) =max{|λ| : λ ∈ σ(A)}. This is just the
radius of the smallest disc centered at the origin in the complex plane that
includes all the eigenvalues of A.

Definition 1.3. [2] A matrix A ∈ Rn×n is an M -matrix if A = rIn − B for
some nonnegative matrix B and r with r ≥ ρ(B) where ρ(B) is the spectral
radius of B; it is a singular M -matrix if r = ρ(B) and a (nonsingular) M -matrix
if r > ρ(B).

Higham [5] introduced the binomial iteration for finding a square root of
M -matrices. For an M -matrix A, it can be represented by A = rIn − B for
some nonnegative B and r with r ≥ ρ(B). Then we obtain A

1
2 = r

1
2 (In −C)

1
2

with C = 1
rB. By the binomial expansion,

(In − C)
1
2 =

∞∑
j=0

( 1
2

j

)
(−C)j ≡ I −

∞∑
j=1

αjC
j , αj > 0,

which is valid when ρ(C) < 1. If ρ(C) ≥ 1, then we have to choose r that
decrease ρ(C) < 1.

Assume that ρ(C) < 1 then we obtain (I − C)
1
2 =: I − P. Squaring the

equation then we have
I − C = I − 2P + P 2. (1.2)

From the equation (1.2), we obtain a iteration for computing P .

Pk+1 =
1

2
(C + P 2

k ), P0 = 0. (1.3)

2. Convergence of the Relaxed Binomial Iteration

The relaxed binomial iteration can be derived by choosing reasonable coef-
ficient and has the form

Rλ(X) = (1 + λ)F (X)− λX, 0 < λ < 1 (2.1)
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where 0 < λ < 1 and F (X) = 1
2 (X2 + C).

It is well known that if ρ(C) < 1, then the binomial iteration converges. In
this section we consider when the relaxed binomial iteration converges. First,
we present some lemmas to prove the convergence of iteration (2.1).

Lemma 2.1. Let F (X) = 1
2 (X2 + C). If X ≤ Y , then F (X) < F (Y ).

Proof.

F (Y )− F (X) =
1

2
(Y 2 + C)− 1

2
(X2 + C)

=
1

2
(Y 2 −X2)

=
1

2
(Y 2 − Y X + Y X −X2)

=
1

2
(Y (Y −X) + (Y −X)X) ≥ 0.

�

Lemma 2.2. Let F (X) = 1
2 (X2 +C) and Rλ(X) = (1 + λ)F (X)− λX where

0 < λH < XH for H > 0. If X ≤ F (X) and XF (X) = F (X)X, then
F (X) ≤ Rλ(X) ≤ F (F (X)).

Proof.

Rλ(X)− F (X) = (1 + λ)F (X)− λX − F (X)

= λ(F (X)−X)

= F (X +H)

≥ F (X) +XH.

Put H = F (X)−X

F (X +H) = F (X + F (X)−X) = F (F (X))

≥ F (X) +X(F (X)−X)

≥ F (X) + λ(F (X)−X)

= Rλ(X).

�

The following theorem is related to the convergence of the binomial iteration
for computing a square root of M -matrices.

Theorem 2.3. [5, Thm. 6.13] Let C ∈ Rn×n satisfy C ≥ 0 and ρ(C) < 1
and write (I − C)1/2 = I − P . Then in the binomial (1.3), Pk → P with
0 ≤ Pk ≤ Pk+1 ≤ P , k ≥ 0; that is, Pk converges monotonically to P .
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By using Theorem 2.3, convergence of the relaxed binomial iteration can be
proved.

Theorem 2.4. Let C ∈ Rn×n satisfy C ≥ 0 and ρ(C) < 1 and write (I −
C)1/2 = I − P . Then for the iteration (2.1) with Y0 = 0 the sequence Yk is
well-defined and Y0 ≤ Y1 ≤ · · · ≤ P where P is a nonnegative solvent of relaxed
binomial iteration.

Proof. For the iteration with Y0 = 0, we obtain Y0 ≤ F (Y0) ≤ Y1, Y0 ≤ P∗ and
Y0C = CY0.

Therefore, the statement

Yk ≤ F (Yk) ≤ Yk+1, Yk ≤ P, YkC = CYk (2.2)

is true for k = 0.
Suppose the statement is true for k = i

Yi+1C = Rλ(Yi)C

= {(1 + λ)F (Yi)− λYi}C
= (1 + λ)F (Yi)C − λYiC
= (1 + λ)CF (Yi)− λCYi
= C{(1 + λ)F (Yi)− λYi}
= CYi+1.

By Lemma 2.1 and Lemma 2.2, we have F (F (Yi)) ≤ F (Yi+1) and F (Yi) ≤
Rλ(Yi) ≤ F (F (Yi)). Since Rλ(Yi) = Yi+1, then Yi+1 ≤ F (Yi+1). It follows
form Lemma 2.2 that

F (Yi+1) ≤ R(Yi+1) ≤ F (F (Yi+1)).

Therefore, Yi+1 ≤ Yi+2.
Since Yi ≤ Y∗, F (P ) = P and Lemma 2.1, F (Yi) ≤ F (F (Yi)) ≤ P . By

Lemma2.2, we have

F (Yi) ≤ Yi+1 ≤ F (F (Yi)) ≤ P.
Therefore, Yi+1 ≤ P.

Since the sequence {Yk} is monotone nondeceasing and bounded above, then
the sequence has a limit, P∗. This limit satisfies P∗ = 1

2 (C +P 2
∗ ). By squaring

this equation, (I−P∗)2 = I−C. Since ρ(Pk) ≤ ρ(P ) < 1 for all k, so ρ(P∗) < 1.
Therefore, I − P∗ is the principal square root. In other words, P∗ = P. �

3. Finding Relaxation coefficients

Higham [5] demonstrated the usefulness of the Newton-Schulz iteration for
solving a square root of M -matrices . In Section 2, we confirm that the relaxed
binomial iteration converges with some relaxation coefficients. Our purpose
in this section is to show experimentally the benefits of the relaxed binomial
iteration and the method of finding an appropriate relaxation coefficient. Our
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experiments were done in MATLAB. Through some experiments we see that
there is correlation between relaxation coefficients and ρ(C). So we construct
a relation through statistical experiments. In the tables, we use “IT” to denote

the number of iteration steps and µ = |λmax|+|λmin|
2 . The stopping criterion for

each iteration is ‖Xk −Xk−1‖ < 10−5, where Xk is the k-th iteration value.
Figure 3.1 and Figure 3.2 give the result that the relaxed binomial method

can be more efficient according to the value of relaxation coefficient, in the
sense of flops.
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Figure 3.1. γ and the number of iteration steps
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Figure 3.2. γ and the number of flops

So we see that it is important to find an appropriate relaxation coefficient.
Like Figure 3.1 and Figure 3.2, we can obtain a proper relaxation coefficient
by repeating experiments to substitute γ from 0.0001 to 0.9999 in the order.
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But this method is too expansive when matrix size is significantly large. So,
we want to estimate γ̂. To find it, we construct a least square problem. We
want to find the output γ to be a linear function of the input µ. That is, We
find a straight line γ = α+ βµ from solving the least square problem [11].

1 µ1

1 µ2

...
...

1 µk


[
α
β

]
=


γ1
γ2
...
γk


In the equation, µi =

|λimax |+|λimin
|

2 and γi is the optimal relaxation coeffi-
cient that is most reduce the number of iteration steps. The optimal γ can be
obtained by repetition method.

Through 100 times experiments, we can get γ̂ = −0.5621 + 1.9848µ. Then,
we need to confirm that γ̂ obtained from linear function is a good estimate
from an experiment.

Example 3.1.

A =


2.052 −0.24106 −0.021699 −0.9913 −0.28753
−0.13479 1.4345 −0.15953 −0.71203 −0.060941
−0.22333 −0.3911 1.5175 −0.87136 −0.26247
−0.39655 −0.51126 −0.87915 1.8824 −0.18626
−0.13514 −0.092896 −0.18699 −0.496 1.4449


From definition of M -matrix, A can be represented as A = 2.2140(I−C), then
C = I − 1

2.2140A.

C =


0.073194 0.10888 0.0098006 0.44774 0.12987
0.060879 0.35209 0.072056 0.3216 0.027525
0.10087 0.17665 0.3146 0.39356 0.11855
0.17911 0.23092 0.39708 0.1498 0.084127
0.061039 0.041958 0.084456 0.22403 0.34738


Applying the relaxed binomial iteration to this matrix with the optimal γ and
γ̂ respectively. From Table 1, we see the optimal γ and γ̂ are not same but
they have an effect on method similarly. Thus, we know γ̂ is a good estimate.

µ = 0.5044
Method IT Flops

RBI with γopt = 0.4327 21 5250
RBI with γ̂ = 0.4390 22 5500

Table 1. The result of Example 3.1
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4. Experiments

In this section, we give some examples and compare the Newton-Schulz
iteration, the binomial iteration and the relaxed binomial iteration.

Example 4.1. Consider the matrix A of size n = 5, we write C = I − 1
3.0655A

to make ρ(C) < 1.

A =


2.3351 −0.7984 −0.5456 −0.8364 −0.1340
−0.9249 2.1492 −0.2843 −0.1453 −0.8848
−0.6295 −0.9811 2.2134 −0.1715 −0.5147
−0.8783 −0.0960 −0.0647 2.5162 −0.9636
−0.6417 −0.5275 −0.5448 −0.8240 2.4637



C =


0.2383 0.2604 0.1780 0.2728 0.0437
0.3017 0.2989 0.0928 0.0474 0.2886
0.2054 0.3201 0.2780 0.0560 0.1679
0.2865 0.0313 0.0211 0.1792 0.3144
0.2093 0.1721 0.1777 0.2688 0.1963


Then three methods apply for the matrix C, we can get the result Table 2.

µ = 0.5227
Method IT Flops

RBI with γ̂ = 0.4754 37 9250
BI 57 14250

Newton-Schulz 13 9750
Table 2. The results of Example 4.1

In Table 2, the Newton-Schulz iteration has 13 times iteration steps small
compared with the relaxed binomial iteration. But the Newton-Schulz iteration
has more flops than the relaxed binomial iteration because the Newton-Schulz
iteration requires three matrix multiplications per iteration versus one for the
relaxed binomial iteration. Thus we can see that the relaxed binomial iteration
is more efficient than Newton-Schulz iteration for calculating a square root of
M -matrices.

Example 4.2. We compare three methods by applying for an M -matrix A of
size n = 20. Table 3 presents that we get the same result when matrix size is
large.
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Figure 4.1. M -matrix A of size n = 20

µ = 0.5059
Method IT Flops

RBI with γ̂ = 0.4420 17 4250
BI 28 6250

Newton-Schulz 8 6000
Table 3. The results of Example 4.2
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